Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Limitation and Experience Replay for GNNs in Continual Learning (2302.03534v2)

Published 7 Feb 2023 in cs.LG

Abstract: Continual learning seeks to empower models to progressively acquire information from a sequence of tasks. This approach is crucial for many real-world systems, which are dynamic and evolve over time. Recent research has witnessed a surge in the exploration of Graph Neural Networks (GNN) in Node-wise Graph Continual Learning (NGCL), a practical yet challenging paradigm involving the continual training of a GNN on node-related tasks. Despite recent advancements in continual learning strategies for GNNs in NGCL, a thorough theoretical understanding, especially regarding its learnability, is lacking. Learnability concerns the existence of a learning algorithm that can produce a good candidate model from the hypothesis/weight space, which is crucial for model selection in NGCL development. This paper introduces the first theoretical exploration of the learnability of GNN in NGCL, revealing that learnability is heavily influenced by structural shifts due to the interconnected nature of graph data. Specifically, GNNs may not be viable for NGCL under significant structural changes, emphasizing the need to manage structural shifts. To mitigate the impact of structural shifts, we propose a novel experience replay method termed Structure-Evolution-Aware Experience Replay (SEA-ER). SEA-ER features an innovative experience selection strategy that capitalizes on the topological awareness of GNNs, alongside a unique replay strategy that employs structural alignment to effectively counter catastrophic forgetting and diminish the impact of structural shifts on GNNs in NGCL. Our extensive experiments validate our theoretical insights and the effectiveness of SEA-ER.

Citations (5)

Summary

We haven't generated a summary for this paper yet.