Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Language Processing for Policymaking (2302.03490v1)

Published 7 Feb 2023 in cs.CL, cs.AI, cs.CY, and cs.LG

Abstract: Language is the medium for many political activities, from campaigns to news reports. Natural language processing (NLP) uses computational tools to parse text into key information that is needed for policymaking. In this chapter, we introduce common methods of NLP, including text classification, topic modeling, event extraction, and text scaling. We then overview how these methods can be used for policymaking through four major applications including data collection for evidence-based policymaking, interpretation of political decisions, policy communication, and investigation of policy effects. Finally, we highlight some potential limitations and ethical concerns when using NLP for policymaking. This text is from Chapter 7 (pages 141-162) of the Handbook of Computational Social Science for Policy (2023). Open Access on Springer: https://doi.org/10.1007/978-3-031-16624-2

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhijing Jin (70 papers)
  2. Rada Mihalcea (131 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.