Papers
Topics
Authors
Recent
Search
2000 character limit reached

High Resolution Global Precipitation Downscaling with Latent Gaussian Models and Nonstationary SPDE Structure

Published 6 Feb 2023 in stat.AP | (2302.03148v1)

Abstract: Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a sustainable access to water resources at urban scale. Mapping a nonstationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space-time dependence structures. In this work, we propose a new approach based on capturing the spatial dependence of a latent Gaussian process via a locally deformed Stochastic Partial Differential Equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with Integrated Nested Laplace Approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high resolution simulations of daily precipitation across the United States.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.