Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Renormalized density matrix downfolding: A rigorous framework in learning emergent models from ab initio many-body calculations (2302.02899v3)

Published 6 Feb 2023 in cond-mat.str-el and cond-mat.mtrl-sci

Abstract: We present a generalized framework, renormalized density matrix downfolding (RDMD), to derive systematically improvable, highly accurate, and nonperturbative effective models from ab initio calculations. This framework moves beyond the common role of ab initio calculations as calculating the parameters of a proposed Hamiltonian. Instead, RDMD provides the capability to decide whether a given effective Hilbert space can be identified from the ab initio data and assess the relative quality of ansatz Hamiltonians. Any method of ab initio solution can be used as a data source, and as the ab initio solutions improve, the resultant model also improves. We demonstrate the framework in an application to the downfolding of a hydrogen chain to a spin model, in which we find the interatomic separations for which a nonperturbative mapping can be made even in the strong coupling regime where standard methods fail, and compute a renormalized spin model Hamiltonian that quantitatively reproduces the ab initio dynamics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.