Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Cyclic Group Factorizations of Finite Groups (2302.02831v2)

Published 6 Feb 2023 in math.GR and cs.CR

Abstract: In this paper, we introduce a kind of decomposition of a finite group called a uniform group factorization, as a generalization of exact factorizations of a finite group. A group $G$ is said to admit a uniform group factorization if there exist subgroups $H_1, H_2, \ldots, H_k$ such that $G = H_1 H_2 \cdots H_k$ and the number of ways to represent any element $g \in G$ as $g = h_1 h_2 \cdots h_k$ ($h_i \in H_i$) does not depend on the choice of $g$. Moreover, a uniform group factorization consisting of cyclic subgroups is called a uniform cyclic group factorization. First, we show that any finite solvable group admits a uniform cyclic group factorization. Second, we show that whether all finite groups admit uniform cyclic group factorizations or not is equivalent to whether all finite simple groups admit uniform group factorizations or not. Lastly, we give some concrete examples of such factorizations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.