Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Complexity of Probability Divergences under Group Symmetry (2302.01915v3)

Published 3 Feb 2023 in math.ST, stat.ML, and stat.TH

Abstract: We rigorously quantify the improvement in the sample complexity of variational divergence estimations for group-invariant distributions. In the cases of the Wasserstein-1 metric and the Lipschitz-regularized $\alpha$-divergences, the reduction of sample complexity is proportional to the group size if the group is finite. In addition to the published version at ICML 2023, our proof indeed has included the case when the group is infinite such as compact Lie groups, the convergence rate can be further improved and depends on the intrinsic dimension of the fundamental domain characterized by the scaling of its covering number. Our approach is different from that in [Tahmasebi & Jegelka, ICML 2024] and our work also applies to asymmetric divergences, such as the Lipschitz-regularized $\alpha$-divergences. For the maximum mean discrepancy (MMD), the improvement of sample complexity is more nuanced, as it depends on not only the group size but also the choice of kernel. Numerical simulations verify our theories.

Citations (7)

Summary

We haven't generated a summary for this paper yet.