Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra (2302.01873v3)

Published 3 Feb 2023 in quant-ph and cs.DS

Abstract: We propose a class of randomized quantum algorithms for the task of sampling from matrix functions, without the use of quantum block encodings or any other coherent oracle access to the matrix elements. As such, our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures. Our algorithms start from a classical data structure in which the matrix of interest is specified in the Pauli basis. For $N\times N$ Hermitian matrices, the space cost is $\log(N)+1$ qubits and depending on the structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quantum data structures of up to size $O(N2)$, when considering equivalent end-to-end problems. Within our framework, we present a quantum linear system solver that allows one to sample properties of the solution vector, as well as algorithms for sampling properties of ground states and Gibbs states of Hamiltonians. As a concrete application, we combine these sub-routines to present a scheme for calculating Green's functions of quantum many-body systems.

Citations (13)

Summary

We haven't generated a summary for this paper yet.