Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised hierarchical clustering using the learning dynamics of RBMs (2302.01851v3)

Published 3 Feb 2023 in cs.LG, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: Datasets in the real world are often complex and to some degree hierarchical, with groups and sub-groups of data sharing common characteristics at different levels of abstraction. Understanding and uncovering the hidden structure of these datasets is an important task that has many practical applications. To address this challenge, we present a new and general method for building relational data trees by exploiting the learning dynamics of the Restricted Boltzmann Machine (RBM). Our method is based on the mean-field approach, derived from the Plefka expansion, and developed in the context of disordered systems. It is designed to be easily interpretable. We tested our method in an artificially created hierarchical dataset and on three different real-world datasets (images of digits, mutations in the human genome, and a homologous family of proteins). The method is able to automatically identify the hierarchical structure of the data. This could be useful in the study of homologous protein sequences, where the relationships between proteins are critical for understanding their function and evolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. N. Le Roux and Y. Bengio, Representational power of restricted boltzmann machines and deep belief networks, Neural computation 20, 1631 (2008).
  2. A. Decelle, G. Fissore, and C. Furtlehner, Spectral dynamics of learning in restricted boltzmann machines, EPL (Europhysics Letters) 119, 60001 (2017).
  3. A. Decelle, G. Fissore, and C. Furtlehner, Thermodynamics of restricted boltzmann machines and related learning dynamics, Journal of Statistical Physics 172, 1576 (2018).
  4. A. Decelle, C. Furtlehner, and B. Seoane, Equilibrium and non-equilibrium regimes in the learning of restricted boltzmann machines, Advances in Neural Information Processing Systems 34, 5345 (2021).
  5. J. Tubiana and R. Monasson, Emergence of compositional representations in restricted boltzmann machines, Physical review letters 118, 138301 (2017).
  6. J. Tubiana, S. Cocco, and R. Monasson, Learning protein constitutive motifs from sequence data, Elife 8, e39397 (2019).
  7. M. Gabrié, E. W. Tramel, and F. Krzakala, Training restricted Boltzmann machine via the Thouless-Anderson-Palmer free energy, in Advances in neural information processing systems (2015) pp. 640–648.
  8. J. Tubiana, Restricted Boltzmann machines : from compositional representations to protein sequence analysis, Theses, Université Paris sciences et lettres (2018).
  9. T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in Proceedings of the 25th international conference on Machine learning (2008) pp. 1064–1071.
  10. A. Decelle and C. Furtlehner, Restricted boltzmann machine: Recent advances and mean-field theory, Chinese Physics B 30, 040202 (2021).
  11. F. Zamponi, Mean field theory of spin glasses, arXiv preprint arXiv:1008.4844  (2010).
  12. T. Plefka, Convergence condition of the tap equation for the infinite-ranged ising spin glass model, Journal of Physics A: Mathematical and General 15, 1971 (1982).
  13. A. Georges and J. S. Yedidia, How to expand around mean-field theory using high-temperature expansions, Journal of Physics A: Mathematical and General 24, 2173 (1991).
  14. T. Tanaka, Information geometry of mean-field approximation, Neural Computation 12, 1951 (2000).
  15. T. Tanaka, Mean-field theory of boltzmann machine learning, Physical Review E 58, 2302 (1998).
  16. T. Yokota, Ordered phase for the infinite-range potts-glass model, Phys. Rev. B 51, 962 (1995).
  17. D. J. Thouless, P. W. Anderson, and R. G. Palmer, Solution of’solvable model of a spin glass’, Philosophical Magazine 35, 593 (1977).
  18. H. Huang, Statistical mechanics of neural networks (Springer, 2021).
  19. K. Rose, E. Gurewitz, and G. C. Fox, Statistical mechanics and phase transitions in clustering, Phys. Rev. Lett. 65, 945 (1990).
  20. T. Bonnaire, A. Decelle, and N. Aghanim, Cascade of phase transitions for multiscale clustering, Phys. Rev. E 103, 012105 (2021).
  21. . G. P. Consortium et al., A global reference for human genetic variation, Nature 526, 68 (2015).
  22. A. Sancar, Structure and function of dna photolyase and cryptochrome blue-light photoreceptors, Chemical Reviews 103, 2203 (2003), pMID: 12797829, https://doi.org/10.1021/cr0204348 .
  23. K. Brettel and M. Byrdin, Reaction mechanisms of dna photolyase, Current opinion in structural biology 20, 693—701 (2010).
Citations (5)

Summary

We haven't generated a summary for this paper yet.