Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss (2302.01810v1)

Published 3 Feb 2023 in cs.LG, cs.AI, and math.OC

Abstract: Physics informed neural networks (PINNs) have proven to be an efficient tool to represent problems for which measured data are available and for which the dynamics in the data are expected to follow some physical laws. In this paper, we suggest a multiobjective perspective on the training of PINNs by treating the data loss and the residual loss as two individual objective functions in a truly biobjective optimization approach. As a showcase example, we consider COVID-19 predictions in Germany and built an extended susceptibles-infected-recovered (SIR) model with additionally considered leaky-vaccinated and hospitalized populations (SVIHR model) to model the transition rates and to predict future infections. SIR-type models are expressed by systems of ordinary differential equations (ODEs). We investigate the suitability of the generated PINN for COVID-19 predictions and compare the resulting predicted curves with those obtained by applying the method of non-standard finite differences to the system of ODEs and initial data. The approach is applicable to various systems of ODEs that define dynamical regimes. Those regimes do not need to be SIR-type models, and the corresponding underlying data sets do not have to be associated with COVID-19.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. doi:10.1016/j.jcp.2018.10.045.
  2. doi:10.1007/s40194-022-01270-z.
  3. [link]. URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.html;jsessionid=960297181B52EB351E833DD09CD96CAB.internet081?nn=13490888#doc14716546bodyText6
  4. [link]. URL https://ourworldindata.org/coronavirus
  5. doi:10.3390/axioms11030121.
  6. doi:10.1101/2021.04.05.21254919.
  7. doi:10.1137/18M1229845.
  8. doi:10.1063/5.0099450.
  9. doi:10.1016/j.jcp.2020.109951.
  10. doi:10.1137/20M1318043.
  11. doi:10.1088/2632-2153/ac3712.
  12. doi:10.1016/j.crma.2012.03.014.
  13. doi:10.1007/s001860000043.
  14. arXiv:1810.04650v2.
  15. doi:10.1007/s10479-021-04033-z.
  16. doi:10.1016/j.jcp.2022.111121.
  17. doi:10.1016/j.cor.2021.105676.
  18. doi:10.1186/s13662-022-03733-5.
  19. doi:10.1016/S0092-8240(05)80040-0.
  20. doi:10.3934/mbe.2022056.
  21. [link]. URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Fallzahlen_Kum_Tab.html
  22. [link]. URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Klinische_Aspekte.html
  23. [link]. URL https://impfdashboard.de/daten
  24. doi:10.1007/978-1-4899-7612-3.
  25. [link]. URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html
  26. [link]. URL https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html
  27. doi:10.1080/1023619031000146959.
  28. doi:10.1038/s42254-021-00314-5.
  29. doi:10.48550/ARXIV.2201.05624.
  30. doi:10.3390/epidemiologia2040033.
  31. doi:10.48550/ARXIV.2110.05445.
  32. doi:10.1553/etna_vol56s1.
  33. [link]. URL https://github.com/benmoseley/harmonic-oscillator-pinn
  34. S. Ruder, An overview of gradient descent optimization algorithms (2016). doi:10.48550/ARXIV.1609.04747.
  35. doi:10.1007/BF01197559.
  36. doi:10.1287/opre.1070.0425.
  37. doi:10.1371/journal.pcbi.1008124.
  38. doi:10.1016/j.cma.2022.114823.
  39. doi:10.1016/j.jcp.2020.109913.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fabian Heldmann (1 paper)
  2. Sarah Berkhahn (1 paper)
  3. Matthias Ehrhardt (31 papers)
  4. Kathrin Klamroth (27 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.