Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the periodic homogenization of elliptic equations in non-divergence form with large drifts (2302.01157v2)

Published 2 Feb 2023 in math.AP

Abstract: We study the quantitative homogenization of linear second order elliptic equations in non-divergence form with highly oscillating periodic diffusion coefficients and with large drifts, in the so-called ``centered'' setting where homogenization occurs and the large drifts contribute to the effective diffusivity. Using the centering condition and the invariant measures associated to the underlying diffusion process, we transform the equation into divergence form with modified diffusion coefficients but without drift. The latter is in the standard setting for which quantitative homogenization results have been developed systematically. An application of those results then yields quantitative estimates, such as the convergence rates and uniform Lipschitz regularity, for equations in non-divergence form with large drifts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.