Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficiency of Training Neural Network Architectures: An Empirical Study (2302.00967v1)

Published 2 Feb 2023 in cs.LG, cs.AI, and cs.SE

Abstract: The evaluation of Deep Learning models has traditionally focused on criteria such as accuracy, F1 score, and related measures. The increasing availability of high computational power environments allows the creation of deeper and more complex models. However, the computations needed to train such models entail a large carbon footprint. In this work, we study the relations between DL model architectures and their environmental impact in terms of energy consumed and CO$_2$ emissions produced during training by means of an empirical study using Deep Convolutional Neural Networks. Concretely, we study: (i) the impact of the architecture and the location where the computations are hosted on the energy consumption and emissions produced; (ii) the trade-off between accuracy and energy efficiency; and (iii) the difference on the method of measurement of the energy consumed using software-based and hardware-based tools.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yinlena Xu (1 paper)
  2. Silverio Martínez-Fernández (32 papers)
  3. Matias Martinez (51 papers)
  4. Xavier Franch (48 papers)
Citations (13)