Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilevel Markov Chain Monte Carlo for Bayesian Elliptic Inverse Problems with Besov Random Tree Priors (2302.00678v1)

Published 1 Feb 2023 in math.NA, cs.NA, and math.PR

Abstract: We propose a multilevel Monte Carlo-FEM algorithm to solve elliptic Bayesian inverse problems with "Besov random tree prior". These priors are given by a wavelet series with stochastic coefficients, and certain terms in the expansion vanishing at random, according to the law of so-called Galton-Watson trees. This allows to incorporate random fractal structures and large deviations in the log-diffusion, which occur naturally in many applications from geophysics or medical imaging. This framework entails two main difficulties: First, the associated diffusion coefficient does not satisfy a uniform ellipticity condition, which leads to non-integrable terms and thus divergence of standard multilevel estimators. Secondly, the associated space of parameters is Polish, but not a normed linear space. We address the first point by introducing cut-off functions in the estimator to compensate for the non-integrable terms, while the second issue is resolved by employing an independence Metropolis-Hastings sampler. The resulting algorithm converges in the mean-square sense with essentially optimal asymptotic complexity, and dimension-independent acceptance probabilities.

Summary

We haven't generated a summary for this paper yet.