Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of a quantum lattice Boltzmann scheme to the nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions (2302.00245v1)

Published 1 Feb 2023 in math.AP, cs.NA, and math.NA

Abstract: This paper studies the quantum lattice Boltzmann scheme for the nonlinear Dirac equations for Gross-Neveu model in $1+1$ dimensions. The initial data for the scheme are assumed to be convergent in $L2$. Then for any $T\ge 0$ the corresponding solutions for the quantum lattice Boltzmann scheme are shown to be convergent in $C([0,T];L2(R1))$ to the strong solution to the nonlinear Dirac equations as the mesh sizes converge to zero. In the proof, at first a Glimm type functional is introduced to establish the stability estimates for the difference between two solutions for the corresponding quantum lattice Boltzmann scheme, which leads to the compactness of the set of the solutions for the quantum lattice Boltzmann scheme. Finally, the limit of any convergent subsequence of the solutions for the quantum lattice Boltzmann scheme is shown to coincide with the strong solution to a Cauchy problem for the nonlinear Dirac equations.

Summary

We haven't generated a summary for this paper yet.