Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Anomaly Detection in Time Series: A Survey (2302.00058v4)

Published 31 Jan 2023 in cs.LG

Abstract: With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency and the inter-variable dependency, where a variable can be defined as an observation in time-series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of TSAD using graphs, referred to as G-TSAD. First, we explore the significant potential of graph representation learning for time-series data. Then, we review state-of-the-art graph anomaly detection techniques in the context of time series and discuss their strengths and drawbacks. Finally, we discuss the technical challenges and potential future directions for possible improvements in this research field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (136)
  1. S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in time series: a comprehensive evaluation,” Proceedings of the VLDB Endowment, vol. 15, no. 9, pp. 1779–1797, 2022.
  2. A. Blázquez, A. Conde, U. Mori, and J. A. Lozano, “A review on outlier/anomaly detection in time series data,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–33, 2021.
  3. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in International conference on learning representations, 2018.
  4. H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and Q. Zhang, “Time-series anomaly detection service at microsoft,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 3009–3017.
  5. T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time series with recurrent autoencoder ensembles.” in The International Joint Conference on Artificial Intelligence, 2019, pp. 2725–2732.
  6. K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, and X. Hu, “Revisiting time series outlier detection: Definitions and benchmarks,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
  7. Q. Rebjock, B. Kurt, T. Januschowski, and L. Callot, “Online false discovery rate control for anomaly detection in time series,” Advances in Neural Information Processing Systems, vol. 34, pp. 26 487–26 498, 2021.
  8. R. Wu and E. Keogh, “Current time series anomaly detection benchmarks are flawed and are creating the illusion of progress,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  9. S. Kim, K. Choi, H.-S. Choi, B. Lee, and S. Yoon, “Towards a rigorous evaluation of time-series anomaly detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 7194–7201.
  10. A. Deng, A. Goodge, L. Y. Ang, and B. Hooi, “Cadet: Calibrated anomaly detection for mitigating hardness bias,” in The International Joint Conference on Artificial Intelligence, 2022.
  11. H. Hojjati and N. Armanfard, “Self-supervised acoustic anomaly detection via contrastive learning,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2022, pp. 3253–3257.
  12. R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh, “Learning regularity in skeleton trajectories for anomaly detection in videos,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 11 996–12 004.
  13. J.-C. Feng, F.-T. Hong, and W.-S. Zheng, “Mist: Multiple instance self-training framework for video anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 14 009–14 018.
  14. M.-I. Georgescu, A. Barbalau, R. T. Ionescu, F. S. Khan, M. Popescu, and M. Shah, “Anomaly detection in video via self-supervised and multi-task learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 742–12 752.
  15. C. Huang, J. Wen, Y. Xu, Q. Jiang, J. Yang, Y. Wang, and D. Zhang, “Self-supervised attentive generative adversarial networks for video anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  16. N.-C. Ristea, N. Madan, R. T. Ionescu, K. Nasrollahi, F. S. Khan, T. B. Moeslund, and M. Shah, “Self-supervised predictive convolutional attentive block for anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 576–13 586.
  17. J.-C. Wu, H.-Y. Hsieh, D.-J. Chen, C.-S. Fuh, and T.-L. Liu, “Self-supervised sparse representation for video anomaly detection,” in European Conference on Computer Vision, 2022, pp. 729–745.
  18. C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data,” in Proceedings of the AAAI conference on artificial intelligence, 2019, pp. 1409–1416.
  19. B. Zhou, S. Liu, B. Hooi, X. Cheng, and J. Ye, “Beatgan: Anomalous rhythm detection using adversarially generated time series.” in The International Joint Conference on Artificial Intelligence, 2019, pp. 4433–4439.
  20. J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Usad: Unsupervised anomaly detection on multivariate time series,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.
  21. Y. Zhang, Y. Chen, J. Wang, and Z. Pan, “Unsupervised deep anomaly detection for multi-sensor time-series signals,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  22. A. Abdulaal, Z. Liu, and T. Lancewicki, “Practical approach to asynchronous multivariate time series anomaly detection and localization,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2485–2494.
  23. X. Chen, L. Deng, F. Huang, C. Zhang, Z. Zhang, Y. Zhao, and K. Zheng, “Daemon: Unsupervised anomaly detection and interpretation for multivariate time series,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE).   IEEE, 2021, pp. 2225–2230.
  24. S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer networks for anomaly detection in multivariate time series data,” arXiv preprint arXiv:2201.07284, 2022.
  25. L. Deng, D. Lian, Z. Huang, and E. Chen, “Graph convolutional adversarial networks for spatiotemporal anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2416–2428, 2022.
  26. W. Chen, L. Tian, B. Chen, L. Dai, Z. Duan, and M. Zhou, “Deep variational graph convolutional recurrent network for multivariate time series anomaly detection,” in International Conference on Machine Learning, 2022, pp. 3621–3633.
  27. E. Dai and J. Chen, “Graph-augmented normalizing flows for anomaly detection of multiple time series,” in International Conference on Learning Representations, 2022.
  28. Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng, “Learning graph structures with transformer for multivariate time series anomaly detection in iot,” IEEE Internet of Things Journal, 2021.
  29. Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. Yu, “Graph self-supervised learning: A survey,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  30. L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised learning on graphs: Contrastive, generative, or predictive,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  31. C. Wilson, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “Beyond social graphs: User interactions in online social networks and their implications,” ACM Transactions on the Web (TWEB), vol. 6, no. 4, pp. 1–31, 2012.
  32. B. Shao, X. Li, and G. Bian, “A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph,” Expert Systems with Applications, vol. 165, p. 113764, 2021.
  33. L. Wu, Y. Chen, H. Ji, and B. Liu, “Deep learning on graphs for natural language processing,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 2651–2653.
  34. X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  35. Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-supervised learning of graph neural networks: A unified review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  36. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
  37. F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph learning: A survey,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 109–127, 2021.
  38. Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph neural networks: Taxonomy, advances, and trends,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 1, pp. 1–54, 2022.
  39. M. M. Li, K. Huang, and M. Zitnik, “Graph representation learning in biomedicine and healthcare,” Nature Biomedical Engineering, vol. 6, no. 12, pp. 1353–1369, 2022.
  40. X. Liu, M. Yan, L. Deng, G. Li, X. Ye, D. Fan, S. Pan, and Y. Xie, “Survey on graph neural network acceleration: An algorithmic perspective,” in The International Joint Conference on Artificial Intelligence, 2022.
  41. C. Zhang, K. Ding, J. Li, X. Zhang, Y. Ye, N. V. Chawla, and H. Liu, “Few-shot learning on graphs: A survey,” The International Joint Conference on Artificial Intelligence, 2022.
  42. C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He et al., “A survey of graph neural networks for recommender systems: Challenges, methods, and directions,” ACM Transactions on Recommender Systems, vol. 1, no. 1, pp. 1–51, 2023.
  43. S. Khoshraftar and A. An, “A survey on graph representation learning methods,” ACM Transactions on Intelligent Systems and Technology, vol. 15, no. 1, pp. 1–55, 2024.
  44. H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection with graph neural networks: Current status and challenges,” IEEE Access, 2022.
  45. A. D. Pazho, G. A. Noghre, A. A. Purkayastha, J. Vempati, O. Martin, and H. Tabkhi, “A survey of graph-based deep learning for anomaly detection in distributed systems,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  46. J. Ren, F. Xia, I. Lee, A. Noori Hoshyar, and C. Aggarwal, “Graph learning for anomaly analytics: Algorithms, applications, and challenges,” ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 2, pp. 1–29, 2023.
  47. T. Bilot, N. El Madhoun, K. Al Agha, and A. Zouaoui, “Graph neural networks for intrusion detection: A survey,” IEEE Access, 2023.
  48. A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-series data: A survey,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481–6494, 2019.
  49. K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly detection in time-series data: review, analysis, and guidelines,” IEEE Access, 2021.
  50. G. Li and J. J. Jung, “Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges,” Information Fusion, vol. 91, pp. 93–102, 2023.
  51. J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Do deep neural networks contribute to multivariate time series anomaly detection?” Pattern Recognition, vol. 132, p. 108945, 2022.
  52. A. Garg, W. Zhang, J. Samaran, R. Savitha, and C.-S. Foo, “An evaluation of anomaly detection and diagnosis in multivariate time series,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2508–2517, 2021.
  53. A. Deng and B. Hooi, “Graph neural network-based anomaly detection in multivariate time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 4027–4035.
  54. C. Cao, X. Zhang, S. Zhang, P. Wang, and Y. Zhang, “Adaptive graph convolutional networks for weakly supervised anomaly detection in videos,” arXiv preprint arXiv:2202.06503, 2022.
  55. T. K. K. Ho and N. Armanfard, “Self-supervised learning for anomalous channel detection in eeg graphs: Application to seizure analysis,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
  56. H. Hojjati, M. Sadeghi, and N. Armanfard, “Multivariate time-series anomaly detection with temporal self-supervision and graphs: Application to vehicle failure prediction,” in The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2023.
  57. R. R. Chowdhury, J. Li, X. Zhang, D. Hong, R. K. Gupta, and J. Shang, “Primenet: Pre-training for irregular multivariate time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
  58. S. P. Burns, S. Santaniello, R. B. Yaffe, C. C. Jouny, N. E. Crone, G. K. Bergey, W. S. Anderson, and S. V. Sarma, “Network dynamics of the brain and influence of the epileptic seizure onset zone,” Proceedings of the National Academy of Sciences, vol. 111, no. 49, pp. E5321–E5330, 2014.
  59. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp. 855–864.
  60. X. Zhu, C. Lei, H. Yu, Y. Li, J. Gan, and S. Zhang, “Robust graph dimensionality reduction.” in International Joint Conference on Artificial Intelligencec, 2018, pp. 3257–3263.
  61. H. Qu, L. Li, Z. Li, and J. Zheng, “Supervised discriminant isomap with maximum margin graph regularization for dimensionality reduction,” Expert Systems with Applications, vol. 180, p. 115055, 2021.
  62. H. Yang, K. Ma, and J. Cheng, “Rethinking graph regularization for graph neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4573–4581.
  63. I. Ahmed, T. Galoppo, X. Hu, and Y. Ding, “Graph regularized autoencoder and its application in unsupervised anomaly detection,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 8, pp. 4110–4124, 2021.
  64. J. Zeng, J. Pang, W. Sun, and G. Cheung, “Deep graph laplacian regularization for robust denoising of real images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.
  65. S. Rey and A. G. Marques, “Robust graph-filter identification with graph denoising regularization,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 5300–5304.
  66. X. Li, H. Fan, and J. Liu, “Noise-aware clustering based on maximum correntropy criterion and adaptive graph regularization,” Information Sciences, vol. 626, pp. 42–59, 2023.
  67. S. Tang, J. A. Dunnmon, Q. Liangqiong, K. K. Saab, T. Baykaner, C. Lee-Messer, and D. L. Rubin, “Modeling multivariate biosignals with graph neural networks and structured state space models,” in Conference on Health, Inference, and Learning.   PMLR, 2023, pp. 50–71.
  68. Z. Kang, H. Pan, S. C. Hoi, and Z. Xu, “Robust graph learning from noisy data,” IEEE Transactions on Cybernetics, vol. 50, no. 5, pp. 1833–1843, 2019.
  69. P. Berger, G. Hannak, and G. Matz, “Efficient graph learning from noisy and incomplete data,” IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 105–119, 2020.
  70. X. Du, T. Bian, Y. Rong, B. Han, T. Liu, T. Xu, W. Huang, Y. Li, and J. Huang, “Noise-robust graph learning by estimating and leveraging pairwise interactions,” Transactions on Machine Learning Research, 2023.
  71. Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural networks with noisy labels,” Advances in neural information processing systems, vol. 31, 2018.
  72. X. Teng, M. Yan, A. M. Ertugrul, and Y.-R. Lin, “Deep into hypersphere: Robust and unsupervised anomaly discovery in dynamic networks,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018.
  73. X. Teng, Y.-R. Lin, and X. Wen, “Anomaly detection in dynamic networks using multi-view time-series hypersphere learning,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 827–836.
  74. D. M. Tax and R. P. Duin, “Support vector data description,” Machine learning, vol. 54, pp. 45–66, 2004.
  75. M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoencoder,” in International conference on machine learning.   PMLR, 2017, pp. 1945–1954.
  76. W. Zhang, C. Zhang, and F. Tsung, “Grelen: Multivariate time series anomaly detection from the perspective of graph relational learning,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, 2022, pp. 2390–2397.
  77. I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: An introduction and review of current methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 11, pp. 3964–3979, 2020.
  78. Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for multivariate time series through stochastic recurrent neural network,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2828–2837.
  79. X. Jiang, J. Liu, J. Wang, Q. Nie, K. Wu, Y. Liu, C. Wang, and F. Zheng, “Softpatch: Unsupervised anomaly detection with noisy data,” Advances in Neural Information Processing Systems, vol. 35, pp. 15 433–15 445, 2022.
  80. T. K. K. Ho and N. Armanfard, “Multivariate time-series anomaly detection with contaminated data,” arXiv preprint arXiv:2308.12563, 2024.
  81. Y. Tashiro, J. Song, Y. Song, and S. Ermon, “Csdi: Conditional score-based diffusion models for probabilistic time series imputation,” Advances in Neural Information Processing Systems, vol. 34, pp. 24 804–24 816, 2021.
  82. K. Rasul, C. Seward, I. Schuster, and R. Vollgraf, “Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8857–8868.
  83. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  84. H. Liang, L. Song, J. Du, X. Li, and L. Guo, “Consistent anomaly detection and localization of multivariate time series via cross-correlation graph-based encoder–decoder gan,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–10, 2021.
  85. L. Zhou, Q. Zeng, and B. Li, “Hybrid anomaly detection via multihead dynamic graph attention networks for multivariate time series,” IEEE Access, vol. 10, pp. 40 967–40 978, 2022.
  86. S. Han and S. S. Woo, “Learning sparse latent graph representations for anomaly detection in multivariate time series,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 2977–2986.
  87. H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang, “Multivariate time-series anomaly detection via graph attention network,” in 2020 IEEE International Conference on Data Mining (ICDM).   IEEE, 2020, pp. 841–850.
  88. Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu, “A survey on graph structure learning: Progress and opportunities,” in The International Joint Conference on Artificial Intelligence, 2021.
  89. D. Eswaran and C. Faloutsos, “Sedanspot: Detecting anomalies in edge streams,” in 2018 IEEE International conference on data mining (ICDM).   IEEE, 2018, pp. 953–958.
  90. S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos, “Midas: Microcluster-based detector of anomalies in edge streams,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 3242–3249.
  91. P. Boniol and T. Palpanas, “Series2graph: Graph-based subsequence anomaly detection for time series,” arXiv preprint arXiv:2207.12208, 2022.
  92. T. Zhao, B. Ni, W. Yu, Z. Guo, N. Shah, and M. Jiang, “Action sequence augmentation for early graph-based anomaly detection,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 2668–2678.
  93. J.-X. Zhong, N. Li, W. Kong, S. Liu, T. H. Li, and G. Li, “Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 1237–1246.
  94. N. Li, J.-X. Zhong, X. Shu, and H. Guo, “Weakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaning,” Neurocomputing, vol. 481, pp. 154–167, 2022.
  95. Y. Yao, X. Wang, M. Xu, Z. Pu, Y. Wang, E. Atkins, and D. J. Crandall, “Dota: Unsupervised detection of traffic anomaly in driving videos,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 1, pp. 444–459, 2022.
  96. K. Zhang, Q. Wen, C. Zhang, R. Cai, M. Jin, Y. Liu, J. Y. Zhang, Y. Liang, G. Pang, D. Song et al., “Self-supervised learning for time series analysis: Taxonomy, progress, and prospects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
  97. H. Hojjati, T. K. K. Ho, and N. Armanfard, “Self-supervised anomaly detection in computer vision and beyond: A survey and outlook,” Neural Networks, p. 106106, 2024.
  98. L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection in dynamic graph using attention-based temporal gcn,” in The International Joint Conference on Artificial Intelligence, 2019, pp. 4419–4425.
  99. Y. Liu, S. Pan, Y. G. Wang, F. Xiong, L. Wang, Q. Chen, and V. C. Lee, “Anomaly detection in dynamic graphs via transformer,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  100. D. Purwanto, Y.-T. Chen, and W.-H. Fang, “Dance with self-attention: A new look of conditional random fields on anomaly detection in videos,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 173–183.
  101. K. Doshi and Y. Yilmaz, “Towards interpretable video anomaly detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2655–2664.
  102. F. Xia, X. Chen, S. Yu, M. Hou, M. Liu, and L. You, “Coupled attention networks for multivariate time series anomaly detection,” IEEE Transactions on Emerging Topics in Computing, 2023.
  103. D. Guo, Z. Liu, and R. Li, “Regraphgan: A graph generative adversarial network model for dynamic network anomaly detection,” Neural Networks, vol. 166, pp. 273–285, 2023.
  104. C. Ding, S. Sun, and J. Zhao, “Mst-gat: A multimodal spatial–temporal graph attention network for time series anomaly detection,” Information Fusion, vol. 89, pp. 527–536, 2023.
  105. S. Chang, Y. Li, J. S. Shen, J. Feng, and Z. Zhou, “Contrastive attention for video anomaly detection,” IEEE Transactions on Multimedia, 2021.
  106. H. Chen, X. Mei, Z. Ma, X. Wu, and Y. Wei, “Spatial–temporal graph attention network for video anomaly detection,” Image and Vision Computing, vol. 131, p. 104629, 2023.
  107. N. Laptev, S. Amizadeh, and Y. Billawala, “S5-a labeled anomaly detection dataset, version 1.0 (16m),” 2015.
  108. K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, “Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 387–395.
  109. A. P. Mathur and N. O. Tippenhauer, “Swat: A water treatment testbed for research and training on ics security,” in 2016 international workshop on cyber-physical systems for smart water networks (CySWater).   IEEE, 2016, pp. 31–36.
  110. C. M. Ahmed, V. R. Palleti, and A. P. Mathur, “Wadi: a water distribution testbed for research in the design of secure cyber physical systems,” in Proceedings of the 3rd international workshop on cyber-physical systems for smart water networks, 2017, pp. 25–28.
  111. D. Wagner, T. Michels, F. C. Schulz, A. Nair, M. Rudolph, and M. Kloft, “TimeseAD: Benchmarking deep multivariate time-series anomaly detection,” Transactions on Machine Learning Research, 2023.
  112. S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, “The uci kdd archive of large data sets for data mining research and experimentation,” ACM SIGKDD explorations newsletter, vol. 2, no. 2, pp. 81–85, 2000.
  113. T. Lai, T. K. K. Ho, and N. Armanfard, “Open-set multivariate time-series anomaly detection,” arXiv preprint arXiv:2310.12294, 2023.
  114. E. C. Erkus and V. Purutcuoğlu, “A new collective anomaly detection approach using pitch frequency and dissimilarity: Pitchy anomaly detection (pad),” Journal of Computational Science, p. 102084, 2023.
  115. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals,” circulation, vol. 101, no. 23, pp. e215–e220, 2000.
  116. A. Taddei, G. Distante, M. Emdin, P. Pisani, G. Moody, C. Zeelenberg, and C. Marchesi, “The european st-t database: standard for evaluating systems for the analysis of st-t changes in ambulatory electrocardiography,” European heart journal, vol. 13, no. 9, pp. 1164–1172, 1992.
  117. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, “Ptb-xl, a large publicly available electrocardiography dataset,” Scientific data, no. 1, p. 154, 2020.
  118. F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He et al., “An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection,” Journal of Medical Imaging and Health Informatics, vol. 8, no. 7, pp. 1368–1373, 2018.
  119. V. Shah, E. Von Weltin, S. Lopez, J. R. McHugh, L. Veloso, M. Golmohammadi, I. Obeid, and J. Picone, “The temple university hospital seizure detection corpus,” Frontiers in neuroinformatics, vol. 12, p. 83, 2018.
  120. T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social networks, vol. 31, no. 2, pp. 155–163, 2009.
  121. R. Rossi and N. Ahmed, “The network data repository with interactive graph analytics and visualization,” in Proceedings of the AAAI conference on artificial intelligence, vol. 29, no. 1, 2015.
  122. M. De Choudhury, H. Sundaram, A. John, and D. D. Seligmann, “Social synchrony: Predicting mimicry of user actions in online social media,” in 2009 International conference on computational science and engineering, vol. 4.   IEEE, 2009, pp. 151–158.
  123. S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge weight prediction in weighted signed networks,” in 2016 IEEE 16th International Conference on Data Mining, 2016, pp. 221–230.
  124. S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian, “Rev2: Fraudulent user prediction in rating platforms,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, pp. 333–341.
  125. B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting the internet as-level topology,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 1, pp. 53–61, 2005.
  126. W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveillance videos,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6479–6488.
  127. P. Wu, J. Liu, Y. Shi, Y. Sun, F. Shao, Z. Wu, and Z. Yang, “Not only look, but also listen: Learning multimodal violence detection under weak supervision,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16.   Springer, 2020, pp. 322–339.
  128. W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly detection in stacked rnn framework,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 341–349.
  129. W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly detection and localization in crowded scenes,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 1, pp. 18–32, 2013.
  130. H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng et al., “Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications,” in Proceedings of the 2018 world wide web conference, 2018, pp. 187–196.
  131. L. Shen, Z. Li, and J. Kwok, “Timeseries anomaly detection using temporal hierarchical one-class network,” Advances in Neural Information Processing Systems, vol. 33, pp. 13 016–13 026, 2020.
  132. C. U. Carmona, F.-X. Aubet, V. Flunkert, and J. Gasthaus, “Neural contextual anomaly detection for time series,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed.   International Joint Conferences on Artificial Intelligence Organization, 7 2022, pp. 2843–2851.
  133. W. Zhang, C. Zhang, and F. Tsung, “Grelen: Multivariate time series anomaly detection from the perspective of graph relational learning,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, vol. 7, 2022, pp. 2390–2397.
  134. H. Zhang, Z. Wu, Z. Wang, Z. Chen, and Y.-G. Jiang, “Prototypical residual networks for anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 16 281–16 291.
  135. X. Yao, R. Li, J. Zhang, J. Sun, and C. Zhang, “Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 24 490–24 499.
  136. J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233–240.
Citations (3)

Summary

We haven't generated a summary for this paper yet.