Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Blackwell and Average Optimality to Discounted MDPs via the Blackwell Discount Factor (2302.00036v1)

Published 31 Jan 2023 in cs.LG

Abstract: We introduce the Blackwell discount factor for Markov Decision Processes (MDPs). Classical objectives for MDPs include discounted, average, and Blackwell optimality. Many existing approaches to computing average-optimal policies solve for discounted optimal policies with a discount factor close to $1$, but they only work under strong or hard-to-verify assumptions such as ergodicity or weakly communicating MDPs. In this paper, we show that when the discount factor is larger than the Blackwell discount factor $\gamma_{\mathrm{bw}}$, all discounted optimal policies become Blackwell- and average-optimal, and we derive a general upper bound on $\gamma_{\mathrm{bw}}$. The upper bound on $\gamma_{\mathrm{bw}}$ provides the first reduction from average and Blackwell optimality to discounted optimality, without any assumptions, and new polynomial-time algorithms for average- and Blackwell-optimal policies. Our work brings new ideas from the study of polynomials and algebraic numbers to the analysis of MDPs. Our results also apply to robust MDPs, enabling the first algorithms to compute robust Blackwell-optimal policies.

Citations (9)

Summary

We haven't generated a summary for this paper yet.