Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds (2301.13656v4)

Published 31 Jan 2023 in cs.CV and cs.CG

Abstract: We present a comprehensive survey and benchmark of both traditional and learning-based methods for surface reconstruction from point clouds. This task is particularly challenging for real-world acquisitions due to factors such as noise, outliers, non-uniform sampling, and missing data. Traditional approaches often simplify the problem by imposing handcrafted priors on either the input point clouds or the resulting surface, a process that can require tedious hyperparameter tuning. In contrast, deep learning models have the capability to directly learn the properties of input point clouds and desired surfaces from data. We study the influence of handcrafted and learned priors on the precision and robustness of surface reconstruction techniques. We evaluate various time-tested and contemporary methods in a standardized manner. When both trained and evaluated on point clouds with identical characteristics, the learning-based models consistently produce higher-quality surfaces compared to their traditional counterparts -- even in scenarios involving novel shape categories. However, traditional methods demonstrate greater resilience to the diverse anomalies commonly found in real-world 3D acquisitions. For the benefit of the research community, we make our code and datasets available, inviting further enhancements to learning-based surface reconstruction. This can be accessed at https://github.com/raphaelsulzer/dsr-benchmark .

Definition Search Book Streamline Icon: https://streamlinehq.com
References (84)
  1. M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, G. Guennebaud, J. Levine, A. Sharf, and C. Silva, “A survey of surface reconstruction from point clouds,” Computer Graphics Forum, 2016.
  2. F. Cazals and J. Giesen, “Delaunay triangulation based surface reconstruction,” in Effective computational geometry for curves and surfaces.   Springer, 2006.
  3. C. C. You, S. P. Lim, S. C. Lim, J. San Tan, C. K. Lee, and Y. M. J. Khaw, “A survey on surface reconstruction techniques for structured and unstructured data,” in 2020 IEEE Conference on Open Systems (ICOS).   IEEE, 2020, pp. 37–42.
  4. R. M. Bolle and B. C. Vemuri, “On three-dimensional surface reconstruction methods,” IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991.
  5. Z. Huang, Y. Wen, Z. Wang, J. Ren, and K. Jia, “Surface reconstruction from point clouds: A survey and a benchmark,” 2022. [Online]. Available: https://arxiv.org/abs/2205.02413
  6. Z.-Q. Cheng, Y. Wang, B. Li, K. Xu, G. Dang, and S. Jin, “A survey of methods for moving least squares surfaces.” in VG/PBG at SIGGRAPH, 2008.
  7. A. Farshian, M. Götz, G. Cavallaro, C. Debus, M. Nießner, J. A. Benediktsson, and A. Streit, “Deep-learning-based 3D surface reconstruction—A survey,” Proceedings of the IEEE, 2023.
  8. S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional occupancy networks,” in European Conference on Computer Vision (ECCV), 2020.
  9. R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. Newcombe, “Deep local shapes: Learning local SDF priors for detailed 3D reconstruction,” in European Conference on Computer Vision (ECCV), 2020.
  10. C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and T. Funkhouser, “Local implicit grid representations for 3D scenes,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  11. P. Erler, S. Ohrhallinger, N. Mitra, and M. Wimmer, “Points2Surf: Learning implicit surfaces from point clouds,” in European Conference on Computer Vision (ECCV), 2020.
  12. R. Sulzer, L. Landrieu, R. Marlet, and B. Vallet, “Scalable surface reconstruction with delaunay-graph neural networks,” Computer Graphics Forum, 2021.
  13. M.-J. Rakotosaona, P. Guerrero, N. Aigerman, N. J. Mitra, and M. Ovsjanikov, “Learning delaunay surface elements for mesh reconstruction,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  14. A. Boulch and R. Marlet, “Poco: Point convolution for surface reconstruction,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  15. J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: Learning continuous signed distance functions for shape representation,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  16. M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, “A benchmark for surface reconstruction,” ACM Transaction on Graphics., 2013.
  17. S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and evaluation of multi-view stereo reconstruction algorithms,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
  18. R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large scale multi-view stereopsis evaluation,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
  19. C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen, “On benchmarking camera calibration and multi-view stereo for high resolution imagery,” in Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE Computer Society, 2008.
  20. T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler, M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with high-resolution images and multi-camera videos,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  21. A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and Temples,” ACM Transactions on Graphics (TOG), 2017.
  22. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface reconstruction from unorganized points,” in Conference on computer graphics and interactive techniques, 1992.
  23. M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruction,” ACM Transaction on Graphics., 2013.
  24. H. H. Vu, P. Labatut, J. P. Pons, and R. Keriven, “High accuracy and visibility-consistent dense multiview stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012.
  25. L. Kettner, “Using generic programming for designing a data structure for polyhedral surfaces,” Computational Geometry, 1999.
  26. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting algorithm for surface reconstruction,” IEEE transactions on visualization and computer graphics, 1999.
  27. S. Petitjean and E. Boyer, “Regular and non-regular point sets: Properties and reconstruction,” Computational Geometry, 2001.
  28. J. Digne, “An analysis and implementation of a parallel ball pivoting algorithm,” Image Processing On Line, 2014.
  29. N. Sharp and M. Ovsjanikov, “PointTriNet: Learned triangulation of 3D point sets,” in European Conference on Computer Vision (ECCV), 2020, pp. 762–778.
  30. M. Liu, X. Zhang, and H. Su, “Meshing point clouds with predicted intrinsic-extrinsic ratio guidance,” in European Conference on Computer Vision (ECCV).   Springer, 2020.
  31. J.-D. Boissonnat, “Geometric structures for 3D shape representation,” ACM Transactions on Graphics, 1984.
  32. T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “AtlasNet: A papier-mâché approach to learning 3D surface generation,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  33. T. Deprelle, T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry, “Learning elementary structures for 3d shape generation and matching,” Advances in Neural Information Processing Systems, 2019.
  34. A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt, and D. Cohen-Or, “Competing fronts for coarse–to–fine surface reconstruction,” in Computer Graphics Forum.   Wiley Online Library, 2006.
  35. R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2Mesh: A self-prior for deformable meshes,” ACM Transaction on Graphics, 2020.
  36. F. Bernardini and C. L. Bajaj, “Sampling and reconstructing manifolds using alpha-shapes,” Proc. 9th Canad. Conf. Comput. Geom., 1997.
  37. C. Portaneri, M. Rouxel-Labbé, M. Hemmer, D. Cohen-Steiner, and P. Alliez, “Alpha wrapping with an offset,” ACM Transactions on Graphics (TOG), 2022.
  38. R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, “Spectral surface reconstruction from noisy point clouds,” in Eurographics Symposium on Geometry Processing (SGP), 2004.
  39. S. N. Sinha, P. Mordohai, and M. Pollefeys, “Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh,” in International Conference on Computer Vision (ICCV).   IEEE, 2007.
  40. V. H. Hiep, R. Keriven, P. Labatut, and J.-P. Pons, “Towards high-resolution large-scale multi-view stereo,” in Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE, 2009.
  41. P. Labatut, J. P. Pons, and R. Keriven, “Robust and efficient surface reconstruction from range data,” Computer Graphics Forum (CGF), 2009.
  42. C. Mostegel, R. Prettenthaler, F. Fraundorfer, and H. Bischof, “Scalable surface reconstruction from point clouds with extreme scale and density diversity,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  43. L. Caraffa, M. Brédif, and B. Vallet, “3D watertight mesh generation with uncertainties from ubiquitous data,” in Asian Conference on Computer Vision (ACCV), 2017.
  44. Y. Luo, Z. Mi, and W. Tao, “Deepdt: Learning geometry from delaunay triangulation for surface reconstruction,” in AAAI Conference on Artificial Intelligence, 2021.
  45. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Eurographics Symposium on Geometry Processing (SGP).   Eurographics Association, 2006.
  46. R. Kolluri, “Provably good moving least squares,” ACM Transactions on Algorithms (TALG), 2008.
  47. M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe, “Poisson Surface Reconstruction with Envelope Constraints,” Computer Graphics Forum, 2020.
  48. L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3D reconstruction in function space,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  49. A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit geometric regularization for learning shapes,” in Machine Learning and Systems.   JMLR.org, 2020.
  50. S. Peng, C. M. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger, “Shape as points: A differentiable Poisson solver,” in Conference on Neural Information Processing Systems (NeurIPS), 2021.
  51. J. Huang, H.-X. Chen, and S.-M. Hu, “A neural galerkin solver for accurate surface reconstruction,” ACM Transactions on Graphics (TOG), 2022.
  52. F. Williams, Z. Gojcic, S. Khamis, D. Zorin, J. Bruna, S. Fidler, and O. Litany, “Neural fields as learnable kernels for 3D reconstruction,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  53. J. Huang, Z. Gojcic, M. Atzmon, O. Litany, S. Fidler, and F. Williams, “Neural kernel surface reconstruction,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  54. J.-D. Boissonnat and S. Oudot, “Provably good sampling and meshing of surfaces,” Graphical Models, 2005.
  55. W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, 1987.
  56. N. Maruani, R. Klokov, M. Ovsjanikov, P. Alliez, and M. Desbrun, “VoroMesh: Learning watertight surface meshes with Voronoi diagrams,” in International Conference on Computer Vision (ICCV), 2023.
  57. Z. Chen, A. Tagliasacchi, T. Funkhouser, and H. Zhang, “Neural dual contouring,” ACM Transactions on Graphics (TOG), 2022.
  58. Z. Chen and H. Zhang, “Neural marching cubes,” ACM Transactions on Graphics (TOG), 2021.
  59. M. Vetsch, S. Lombardi, M. Pollefeys, and M. R. Oswald, “NeuralMeshing: Differentiable meshing of implicit neural representations,” in Pattern Recognition, B. Andres, F. Bernard, D. Cremers, S. Frintrop, B. Goldlücke, and I. Ihrke, Eds.   Springer, 2022.
  60. D. Attali, J.-D. Boissonnat, and A. Lieutier, “Complexity of the Delaunay triangulation of points on surfaces the smooth case,” in Eurographics Symposium on Geometry Processing (SGP), 2003.
  61. N. Amenta, M. Bern, and D. Eppstein, “The crust and the β𝛽\betaitalic_β-skeleton: Combinatorial curve reconstruction,” Graphical models and image processing, 1998.
  62. Y. Zhou, S. Shen, and Z. Hu, “Detail preserved surface reconstruction from point cloud,” Sensors, 2019.
  63. M. Jancosek and T. Pajdla, “Multi-view reconstruction preserving weakly-supported surfaces,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
  64. M. Jancosek and T. Pajdla, “Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces,” International Scholarly Research Notices, 2014.
  65. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2004.
  66. L. Caraffa, Y. Marchand, M. Brédif, and B. Vallet, “Efficiently distributed watertight surface reconstruction,” in 3DV, 2021.
  67. A. H.-D. Cheng and D. T. Cheng, “Heritage and early history of the boundary element method,” Engineering analysis with boundary elements, 2005.
  68. Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  69. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).   Springer, 2015.
  70. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).   Springer, 2016.
  71. A. Boulch, “Convpoint: Continuous convolutions for point cloud processing,” Computers & Graphics, 2020.
  72. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: Representing scenes as neural radiance fields for view synthesis,” in European Conference on Computer Vision (ECCV), 2020.
  73. ——, “NERF: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, 2021.
  74. J. Ichnowski*, Y. Avigal*, J. Kerr, and K. Goldberg, “Dex-NeRF: Using a neural radiance field to grasp transparent objects,” in Conference on Robot Learning (CoRL), 2020.
  75. M. Oechsle, S. Peng, and A. Geiger, “UNISURF: Unifying neural implicit surfaces and radiance fields for multi-view reconstruction,” in International Conference on Computer Vision (ICCV), 2021.
  76. L. Yariv, P. Hedman, C. Reiser, D. Verbin, P. P. Srinivasan, R. Szeliski, J. T. Barron, and B. Mildenhall, “Bakedsdf: Meshing neural sdfs for real-time view synthesis,” arXiv, 2023.
  77. A. Guédon and V. Lepetit, “Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering,” arXiv preprint arXiv:2311.12775, 2023.
  78. J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,” ACM SIGGRAPH computer graphics, vol. 18, no. 3, pp. 165–174, 1984.
  79. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian splatting for real-time radiance field rendering,” ACM Transactions on Graphics, 2023.
  80. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3D model repository,” arXiv preprint arXiv:1512.03012, 2015.
  81. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3S ShapeNets: A deep representation for volumetric shapes,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  82. J. Huang, Y. Zhou, and L. Guibas, “ManifoldPlus: A robust and scalable watertight manifold surface generation method for triangle soups,” arXiv preprint arXiv:2005.11621, 2020.
  83. C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-R2N2: A unified approach for single and multi-view 3D object reconstruction,” in European Conference on Computer Vision (ECCV), 2016.
  84. F. Cazals and M. Pouget, “Estimating differential quantities using polynomial fitting of osculating jets,” Computer Aided Geometric Design, 2005.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Raphael Sulzer (6 papers)
  2. Renaud Marlet (43 papers)
  3. Bruno Vallet (11 papers)
  4. Loic Landrieu (35 papers)
Citations (17)
X Twitter Logo Streamline Icon: https://streamlinehq.com