Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Round-Robin Beyond Additive Agents: Existence and Fairness of Approximate Equilibria (2301.13652v1)

Published 31 Jan 2023 in cs.GT and cs.MA

Abstract: Fair allocation of indivisible goods has attracted extensive attention over the last two decades, yielding numerous elegant algorithmic results and producing challenging open questions. The problem becomes much harder in the presence of strategic agents. Ideally, one would want to design truthful mechanisms that produce allocations with fairness guarantees. However, in the standard setting without monetary transfers, it is generally impossible to have truthful mechanisms that provide non-trivial fairness guarantees. Recently, Amanatidis et al. [2021] suggested the study of mechanisms that produce fair allocations in their equilibria. Specifically, when the agents have additive valuation functions, the simple Round-Robin algorithm always has pure Nash equilibria and the corresponding allocations are envy-free up to one good (EF1) with respect to the agents' true valuation functions. Following this agenda, we show that this outstanding property of the Round-Robin mechanism extends much beyond the above default assumption of additivity. In particular, we prove that for agents with cancelable valuation functions (a natural class that contains, e.g., additive and budget-additive functions), this simple mechanism always has equilibria and even its approximate equilibria correspond to approximately EF1 allocations with respect to the agents' true valuation functions. Further, we show that the approximate EF1 fairness of approximate equilibria surprisingly holds for the important class of submodular valuation functions as well, even though exact equilibria fail to exist!

Citations (10)

Summary

We haven't generated a summary for this paper yet.