Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Better Quality of Experience in HTTP Adaptive Streaming (2301.13523v2)

Published 31 Jan 2023 in cs.MM

Abstract: HTTP Adaptive Streaming (HAS) is nowadays a popular solution for multimedia delivery. The novelty of HAS lies in the possibility of continuously adapting the streaming session to current network conditions, facilitated by Adaptive Bitrate (ABR) algorithms. Various popular streaming and Video on Demand services such as Netflix, Amazon Prime Video, and Twitch use this method. Given this broad consumer base, ABR algorithms continuously improve to increase user satisfaction. The insights for these improvements are, among others, gathered within the research area of Quality of Experience (QoE). Within this field, various researchers have dedicated their works to identifying potential impairments and testing their impact on viewers' QoE. Two frequently discussed visual impairments influencing QoE are stalling events and quality switches. So far, it is commonly assumed that those stalling events have the worst impact on QoE. This paper challenged this belief and reviewed this assumption by comparing stalling events with multiple quality and high amplitude quality switches. Two subjective studies were conducted. During the first subjective study, participants received a monetary incentive, while the second subjective study was carried out with volunteers. The statistical analysis demonstrated that stalling events do not result in the worst degradation of QoE. These findings suggest that a reevaluation of the effect of stalling events in QoE research is needed. Therefore, these findings may be used for further research and to improve current adaptation strategies in ABR algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.