Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Self-Distillation in the Presence of Label Noise (2301.13304v1)

Published 30 Jan 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Self-distillation (SD) is the process of first training a \enquote{teacher} model and then using its predictions to train a \enquote{student} model with the \textit{same} architecture. Specifically, the student's objective function is $\big(\xi*\ell(\text{teacher's predictions}, \text{ student's predictions}) + (1-\xi)*\ell(\text{given labels}, \text{ student's predictions})\big)$, where $\ell$ is some loss function and $\xi$ is some parameter $\in [0,1]$. Empirically, SD has been observed to provide performance gains in several settings. In this paper, we theoretically characterize the effect of SD in two supervised learning problems with \textit{noisy labels}. We first analyze SD for regularized linear regression and show that in the high label noise regime, the optimal value of $\xi$ that minimizes the expected error in estimating the ground truth parameter is surprisingly greater than 1. Empirically, we show that $\xi > 1$ works better than $\xi \leq 1$ even with the cross-entropy loss for several classification datasets when 50\% or 30\% of the labels are corrupted. Further, we quantify when optimal SD is better than optimal regularization. Next, we analyze SD in the case of logistic regression for binary classification with random label corruption and quantify the range of label corruption in which the student outperforms the teacher in terms of accuracy. To our knowledge, this is the first result of its kind for the cross-entropy loss.

Citations (11)

Summary

We haven't generated a summary for this paper yet.