Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partitioned Matching Games for International Kidney Exchange (2301.13181v2)

Published 30 Jan 2023 in cs.GT, cs.CC, cs.DS, and math.CO

Abstract: We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a "fair" way. A partitioned matching game $(N,v)$ is defined on a graph $G=(V,E)$ with an edge weighting $w$ and a partition $V=V_1 \cup \dots \cup V_n$. The player set is $N = {1, \dots, n}$, and player $p \in N$ owns the vertices in $V_p$. The value $v(S)$ of a coalition $S \subseteq N$ is the maximum weight of a matching in the subgraph of $G$ induced by the vertices owned by the players in $S$. If $|V_p|=1$ for all $p\in N$, then we obtain the classical matching game. Let $c=\max{|V_p| \; |\; 1\leq p\leq n}$ be the width of $(N,v)$. We prove that checking core non-emptiness is polynomial-time solvable if $c\leq 2$ but co-NP-hard if $c\leq 3$. We do this via pinpointing a relationship with the known class of $b$-matching games and completing the complexity classification on testing core non-emptiness for $b$-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.