Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal co-occurrence nonoverlapping sequential rule mining (2301.12630v1)

Published 30 Jan 2023 in cs.DB

Abstract: The aim of sequential pattern mining (SPM) is to discover potentially useful information from a given se-quence. Although various SPM methods have been investigated, most of these focus on mining all of the patterns. However, users sometimes want to mine patterns with the same specific prefix pattern, called co-occurrence pattern. Since sequential rule mining can make better use of the results of SPM, and obtain better recommendation performance, this paper addresses the issue of maximal co-occurrence nonoverlapping sequential rule (MCoR) mining and proposes the MCoR-Miner algo-rithm. To improve the efficiency of support calculation, MCoR-Miner employs depth-first search and backtracking strategies equipped with an indexing mechanism to avoid the use of sequential searching. To obviate useless support calculations for some sequences, MCoR-Miner adopts a filtering strategy to prune the sequences without the prefix pattern. To reduce the number of candidate patterns, MCoR-Miner applies the frequent item and binomial enumeration tree strategies. To avoid searching for the maximal rules through brute force, MCoR-Miner uses a screening strategy. To validate the per-formance of MCoR-Miner, eleven competitive algorithms were conducted on eight sequences. Our experimental results showed that MCoR-Miner outperformed other competitive algorithms, and yielded better recommendation performance than frequent co-occurrence pattern mining. All algorithms and datasets can be downloaded from https://github.com/wuc567/Pattern-Mining/tree/master/MCoR-Miner.

Summary

We haven't generated a summary for this paper yet.