Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximising Weather Forecasting Accuracy through the Utilisation of Graph Neural Networks and Dynamic GNNs (2301.12471v2)

Published 29 Jan 2023 in cs.LG

Abstract: Weather forecasting is an essential task to tackle global climate change. Weather forecasting requires the analysis of multivariate data generated by heterogeneous meteorological sensors. These sensors comprise of ground-based sensors, radiosonde, and sensors mounted on satellites, etc., To analyze the data generated by these sensors we use Graph Neural Networks (GNNs) based weather forecasting model. GNNs are graph learning-based models which show strong empirical performance in many machine learning approaches. In this research, we investigate the performance of weather forecasting using GNNs and traditional Machine learning-based models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.