Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded Engel sinks (2301.12397v1)

Published 29 Jan 2023 in math.GR

Abstract: Suppose that a finite group $G$ admits a soluble group of coprime automorphisms $A$. We prove that if, for some positive integer $m$, every element of the centralizer $C_G(A )$ has a left Engel sink of cardinality at most $m$ (or a right Engel sink of cardinality at most $m$), then $G$ has a subgroup of $(|A|,m)$-bounded index which has Fitting height at most $2\alpha (A)+2$, where $\alpha (A)$ is the composition length of $A$. We also prove that if, for some positive integer $r$, every element of the centralizer $C_G(A )$ has a left Engel sink of rank at most $r$ (or a right Engel sink of rank at most $r$), then $G$ has a subgroup of $(|A|,r)$-bounded index which has Fitting height at most $4{\alpha (A)}+4\alpha (A)+3$. Here, a left Engel sink of an element $g$ of a group $G$ is a set ${\mathscr E}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[x,g],g],\dots ,g]$ belong to ${\mathscr E}(g)$. (Thus, $g$ is a left Engel element precisely when we can choose ${\mathscr E}(g)={ 1}$.) A right Engel sink of an element $g$ of a group $G$ is a set ${\mathscr R}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[g,x],x],\dots ,x]$ belong to ${\mathscr R}(g)$. (Thus, $g$ is a right Engel element precisely when we can choose ${\mathscr R}(g)={ 1}$.)

Summary

We haven't generated a summary for this paper yet.