Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tackling Stackelberg Network Interdiction against a Boundedly Rational Adversary (2301.12232v1)

Published 28 Jan 2023 in math.OC and cs.GT

Abstract: This work studies Stackelberg network interdiction games -- an important class of games in which a defender first allocates (randomized) defense resources to a set of critical nodes on a graph while an adversary chooses its path to attack these nodes accordingly. We consider a boundedly rational adversary in which the adversary's response model is based on a dynamic form of classic logit-based discrete choice models. We show that the problem of finding an optimal interdiction strategy for the defender in the rational setting is NP-hard. The resulting optimization is in fact non-convex and additionally, involves complex terms that sum over exponentially many paths. We tackle these computational challenges by presenting new efficient approximation algorithms with bounded solution guarantees. First, we address the exponentially-many-path challenge by proposing a polynomial-time dynamic programming-based formulation. We then show that the gradient of the non-convex objective can also be computed in polynomial time, which allows us to use a gradient-based method to solve the problem efficiently. Second, we identify a restricted problem that is convex and hence gradient-based methods find the global optimal solution for this restricted problem. We further identify mild conditions under which this restricted problem provides a bounded approximation for the original problem.

Summary

We haven't generated a summary for this paper yet.