2000 character limit reached
Hamiltonians and gauge-invariant Hilbert space for lattice Yang-Mills-like theories with finite gauge group (2301.12224v1)
Published 28 Jan 2023 in quant-ph and hep-lat
Abstract: Motivated by quantum simulation, we consider lattice Hamiltonians for Yang-Mills gauge theories with finite gauge group, for example a finite subgroup of a compact Lie group. We show that the electric Hamiltonian admits an interpretation as a certain natural, non-unique Laplacian operator on the finite Abelian or non-Abelian group, and derive some consequences from this fact. Independently of the chosen Hamiltonian, we provide a full explicit description of the physical, gauge-invariant Hilbert space for pure gauge theories and derive a simple formula to compute its dimension. We illustrate the use of the gauge-invariant basis to diagonalize a dihedral gauge theory on a small periodic lattice.