Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZegOT: Zero-shot Segmentation Through Optimal Transport of Text Prompts (2301.12171v2)

Published 28 Jan 2023 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: Recent success of large-scale Contrastive Language-Image Pre-training (CLIP) has led to great promise in zero-shot semantic segmentation by transferring image-text aligned knowledge to pixel-level classification. However, existing methods usually require an additional image encoder or retraining/tuning the CLIP module. Here, we propose a novel Zero-shot segmentation with Optimal Transport (ZegOT) method that matches multiple text prompts with frozen image embeddings through optimal transport. In particular, we introduce a novel Multiple Prompt Optimal Transport Solver (MPOT), which is designed to learn an optimal mapping between multiple text prompts and visual feature maps of the frozen image encoder hidden layers. This unique mapping method facilitates each of the multiple text prompts to effectively focus on distinct visual semantic attributes. Through extensive experiments on benchmark datasets, we show that our method achieves the state-of-the-art (SOTA) performance over existing Zero-shot Semantic Segmentation (ZS3) approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kwanyoung Kim (12 papers)
  2. Yujin Oh (23 papers)
  3. Jong Chul Ye (210 papers)
Citations (17)