Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Rethinking NPN Classification from Face and Point Characteristics of Boolean Functions (2301.12122v1)

Published 28 Jan 2023 in cs.CC

Abstract: NPN classification is an essential problem in the design and verification of digital circuits. Most existing works explored variable symmetries and cofactor signatures to develop their classification methods. However, cofactor signatures only consider the face characteristics of Boolean functions. In this paper, we propose a new NPN classifier using both face and point characteristics of Boolean functions, including cofactor, influence, and sensitivity. The new method brings a new perspective to the classification of Boolean functions. The classifier only needs to compute some signatures, and the equality of corresponding signatures is a prerequisite for NPN equivalence. Therefore, these signatures can be directly used for NPN classification, thus avoiding the exhaustive transformation enumeration. The experiments show that the proposed NPN classifier gains better NPN classification accuracy with comparable speed.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to a collection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.