Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpreting learning in biological neural networks as zero-order optimization method (2301.11777v2)

Published 27 Jan 2023 in cs.LG, cs.NE, math.ST, and stat.TH

Abstract: Recently, significant progress has been made regarding the statistical understanding of artificial neural networks (ANNs). ANNs are motivated by the functioning of the brain, but differ in several crucial aspects. In particular, the locality in the updating rule of the connection parameters in biological neural networks (BNNs) makes it biologically implausible that the learning of the brain is based on gradient descent. In this work, we look at the brain as a statistical method for supervised learning. The main contribution is to relate the local updating rule of the connection parameters in BNNs to a zero-order optimization method. It is shown that the expected values of the iterates implement a modification of gradient descent.

Citations (4)

Summary

We haven't generated a summary for this paper yet.