Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN (2301.11631v2)

Published 27 Jan 2023 in cs.CV

Abstract: The recent surge in popularity of deep generative models for 3D objects has highlighted the need for more efficient training methods, particularly given the difficulties associated with training with conventional 3D representations, such as voxels or point clouds. Neural Radiance Fields (NeRFs), which provide the current benchmark in terms of quality for the generation of novel views of complex 3D scenes from a limited set of 2D images, represent a promising solution to this challenge. However, the training of these models requires the knowledge of the respective camera positions from which the images were viewed. In this paper, we overcome this limitation by introducing HyperNeRFGAN, a Generative Adversarial Network (GAN) architecture employing a hypernetwork paradigm to transform a Gaussian noise into the weights of a NeRF architecture that does not utilize viewing directions in its training phase. Consequently, as evidenced by the findings of our experimental study, the proposed model, despite its notable simplicity in comparison to existing state-of-the-art alternatives, demonstrates superior performance on a diverse range of image datasets where camera position estimation is challenging, particularly in the context of medical data.

Citations (9)

Summary

We haven't generated a summary for this paper yet.