Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Bilevel Difference Convex Programming for Bayesian Risk Markov Decision Processes (2301.11415v2)

Published 26 Jan 2023 in eess.SY and cs.SY

Abstract: We consider infinite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we utilize the recently proposed formulation, Bayesian risk Markov Decision Process (BR-MDP), to address parameter (or epistemic) uncertainty in MDPs. To solve the infinite-horizon BR-MDP with a class of convex risk measures, we propose a computationally efficient approach called approximate bilevel difference convex programming (ABDCP). The optimization is performed offline and produces the optimal policy that is represented as a finite state controller with desirable performance guarantees. We also demonstrate the empirical performance of the BR-MDP formulation and the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.