Distributional outcome regression via quantile functions and its application to modelling continuously monitored heart rate and physical activity (2301.11399v3)
Abstract: Modern clinical and epidemiological studies widely employ wearables to record parallel streams of real-time data on human physiology and behavior. With recent advances in distributional data analysis, these high-frequency data are now often treated as distributional observations resulting in novel regression settings. Motivated by these modelling setups, we develop a distributional outcome regression via quantile functions (DORQF) that expands existing literature with three key contributions: i) handling both scalar and distributional predictors, ii) ensuring jointly monotone regression structure without enforcing monotonicity on individual functional regression coefficients, iii) providing statistical inference via asymptotic projection-based joint confidence bands and a statistical test of global significance to quantify uncertainty of the estimated functional regression coefficients. The method is motivated by and applied to Actiheart component of Baltimore Longitudinal Study of Aging that collected one week of minute-level heart rate (HR) and physical activity (PA) data on 781 older adults to gain deeper understanding of age-related changes in daily life heart rate reserve, defined as a distribution of daily HR, while accounting for daily distribution of physical activity, age, gender, and body composition. Intriguingly, the results provide novel insights in epidemiology of daily life heart rate reserve.