Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CitationSum: Citation-aware Graph Contrastive Learning for Scientific Paper Summarization (2301.11223v4)

Published 26 Jan 2023 in cs.IR

Abstract: Citation graphs can be helpful in generating high-quality summaries of scientific papers, where references of a scientific paper and their correlations can provide additional knowledge for contextualising its background and main contributions. Despite the promising contributions of citation graphs, it is still challenging to incorporate them into summarization tasks. This is due to the difficulty of accurately identifying and leveraging relevant content in references for a source paper, as well as capturing their correlations of different intensities. Existing methods either ignore references or utilize only abstracts indiscriminately from them, failing to tackle the challenge mentioned above. To fill that gap, we propose a novel citation-aware scientific paper summarization framework based on citation graphs, able to accurately locate and incorporate the salient contents from references, as well as capture varying relevance between source papers and their references. Specifically, we first build a domain-specific dataset PubMedCite with about 192K biomedical scientific papers and a large citation graph preserving 917K citation relationships between them. It is characterized by preserving the salient contents extracted from full texts of references, and the weighted correlation between the salient contents of references and the source paper. Based on it, we design a self-supervised citation-aware summarization framework (CitationSum) with graph contrastive learning, which boosts the summarization generation by efficiently fusing the salient information in references with source paper contents under the guidance of their correlations. Experimental results show that our model outperforms the state-of-the-art methods, due to efficiently leveraging the information of references and citation correlations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zheheng Luo (14 papers)
  2. Qianqian Xie (60 papers)
  3. Sophia Ananiadou (72 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.