Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier transform from the symmetric square representation of $PGL_2$ and $SL_2$ (2301.11041v2)

Published 26 Jan 2023 in math.RT and math.AG

Abstract: Let $G$ be a connected reductive group over $\overline{\mathbb{F}}q$ and let $\rho\vee:G\vee\rightarrow GL_n$ be an algebraic representation of the dual group $G\vee$. Assuming that $G$ and $\rho\vee$ are defined over $\mathbb{F}_q$, Braverman and Kazhdan defined an operator on the space $\mathcal{C}(G(\mathbb{F}_q))$ of complex valued functions on $G(\mathbb{F}_q)$. In this paper we are interested in the case where $G$ is either $SL_2$ or $PGL_2$ and $\rho\vee$ is the symmetric square representation of $G\vee$. We construct a natural $G\times G$-equivariant embedding $G\hookrightarrow\mathcal{G}=\mathcal{G}\rho$ and an involutive operator (Fourier transform) $\mathcal{F}{\mathcal{G}}$ on the space of functions $\mathcal{C}(\mathcal{G}(\mathbb{F}_q))$ that extends Braverman-Kazhdan's operator.

Citations (3)

Summary

We haven't generated a summary for this paper yet.