Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Global Convergence of Risk-Averse Policy Gradient Methods with Expected Conditional Risk Measures (2301.10932v3)

Published 26 Jan 2023 in cs.LG, math.OC, and stat.ML

Abstract: Risk-sensitive reinforcement learning (RL) has become a popular tool for controlling the risk of uncertain outcomes and ensuring reliable performance in highly stochastic sequential decision-making problems. While Policy Gradient (PG) methods have been developed for risk-sensitive RL, it remains unclear if these methods enjoy the same global convergence guarantees as in the risk-neutral case \citep{mei2020global,agarwal2021theory,cen2022fast,bhandari2024global}. In this paper, we consider a class of dynamic time-consistent risk measures, named Expected Conditional Risk Measures (ECRMs), and derive PG and Natural Policy Gradient (NPG) updates for ECRMs-based RL problems. We provide global optimality {and iteration complexities} of the proposed algorithms under the following four settings: (i) PG with constrained direct parameterization, (ii) PG with softmax parameterization and log barrier regularization, (iii) NPG with softmax parameterization and entropy regularization, and (iv) approximate NPG with inexact policy evaluation. Furthermore, we test a risk-averse REINFORCE algorithm \citep{williams1992simple} and a risk-averse NPG algorithm \citep{kakade2001natural} on a stochastic Cliffwalk environment to demonstrate the efficacy of our methods and the importance of risk control.

Citations (5)

Summary

We haven't generated a summary for this paper yet.