Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Set-Theoretic and Type-Theoretic Ordinals Coincide (2301.10696v3)

Published 25 Jan 2023 in cs.LO and math.LO

Abstract: In constructive set theory, an ordinal is a hereditarily transitive set. In homotopy type theory (HoTT), an ordinal is a type with a transitive, wellfounded, and extensional binary relation. We show that the two definitions are equivalent if we use (the HoTT refinement of) Aczel's interpretation of constructive set theory into type theory. Following this, we generalize the notion of a type-theoretic ordinal to capture all sets in Aczel's interpretation rather than only the ordinals. This leads to a natural class of ordered structures which contains the type-theoretic ordinals and realizes the higher inductive interpretation of set theory. All our results are formalized in Agda.

Citations (7)

Summary

We haven't generated a summary for this paper yet.