Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite time blow-up for the three dimensional energy critical heat equation in bounded domains (2301.10442v4)

Published 25 Jan 2023 in math.AP

Abstract: We consider the Dirichlet problem for the energy-critical heat equation \begin{equation*} \begin{cases} u_t=\Delta u+u5,~&\mbox{ in } \Omega \times \mathbb{R}+,\ u(x,t)=0,~&\mbox{ on } \partial \Omega \times \mathbb{R}+,\ u(x,0)=u_0(x),~&\mbox{ in } \Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded smooth domain in $\mathbb{R}3$. Let $H_\gamma(x,y)$ be the regular part of the Green function of $-\Delta-\gamma$ in $\Omega$, where $\gamma \in (0,\lambda_1)$ and $\lambda_1$ is the first Dirichlet eigenvalue of $-\Delta$. Then, given a point $q\in \Omega$ such that $3\gamma(q)<\lambda_1$, where $$ \gamma(q)=\sup{ \gamma>0: H_\gamma(q,q)>0 }, $$ we prove the existence of a non-radial global positive and smooth solution $u(x,t)$ which blows up in infinite time with spike in $q$. The solution has the asymptotic profile $$ u(x,t)\sim 3{\frac{1}{4}} \bigg(\frac{\mu(t)}{\mu(t)2+|x-\xi(t)|2}\bigg){\frac{1}{2}} \quad \text{as}\quad t \to \infty, $$ where $$ -\ln \mu(t)= 2\gamma(q) t(1+o(1)),\quad \xi(t)=q+O\big(\mu(t)\big) \quad \text{as}\quad t \to \infty. $$

Citations (1)

Summary

We haven't generated a summary for this paper yet.