Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregating heavy-tailed random vectors: from finite sums to Lévy processes (2301.10423v1)

Published 25 Jan 2023 in math.PR and q-fin.RM

Abstract: The tail behavior of aggregates of heavy-tailed random vectors is known to be determined by the so-called principle of "one large jump'', be it for finite sums, random sums, or, L\'evy processes. We establish that, in fact, a more general principle is at play. Assuming that the random vectors are multivariate regularly varying on various subcones of the positive quadrant, first we show that their aggregates are also multivariate regularly varying on these subcones. This allows us to approximate certain tail probabilities which were rendered asymptotically negligible under classical regular variation, despite the "one large jump'' asymptotics. We also discover that depending on the structure of the tail event of concern, the tail behavior of the aggregates may be characterized by more than a single large jump. Eventually, we illustrate a similar phenomenon for multivariate regularly varying L\'evy processes, establishing as well a relationship between multivariate regular variation of a L\'evy process and multivariate regular variation of its L\'evy measure on different subcones.

Citations (3)

Summary

We haven't generated a summary for this paper yet.