Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation Alone Can Improve Adversarial Training (2301.09879v1)

Published 24 Jan 2023 in cs.CV and cs.LG

Abstract: Adversarial training suffers from the issue of robust overfitting, which seriously impairs its generalization performance. Data augmentation, which is effective at preventing overfitting in standard training, has been observed by many previous works to be ineffective in mitigating overfitting in adversarial training. This work proves that, contrary to previous findings, data augmentation alone can significantly boost accuracy and robustness in adversarial training. We find that the hardness and the diversity of data augmentation are important factors in combating robust overfitting. In general, diversity can improve both accuracy and robustness, while hardness can boost robustness at the cost of accuracy within a certain limit and degrade them both over that limit. To mitigate robust overfitting, we first propose a new crop transformation, Cropshift, which has improved diversity compared to the conventional one (Padcrop). We then propose a new data augmentation scheme, based on Cropshift, with much improved diversity and well-balanced hardness. Empirically, our augmentation method achieves the state-of-the-art accuracy and robustness for data augmentations in adversarial training. Furthermore, when combined with weight averaging it matches, or even exceeds, the performance of the best contemporary regularization methods for alleviating robust overfitting. Code is available at: https://github.com/TreeLLi/DA-Alone-Improves-AT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lin Li (329 papers)
  2. Michael Spratling (15 papers)
Citations (46)
Github Logo Streamline Icon: https://streamlinehq.com