Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Baselines for Multiple Object Rearrangement Planning in Partially Observable Mapped Environments (2301.09854v1)

Published 24 Jan 2023 in cs.RO and cs.AI

Abstract: Many real-world tasks, from house-cleaning to cooking, can be formulated as multi-object rearrangement problems -- where an agent needs to get specific objects into appropriate goal states. For such problems, we focus on the setting that assumes a pre-specified goal state, availability of perfect manipulation and object recognition capabilities, and a static map of the environment but unknown initial location of objects to be rearranged. Our goal is to enable home-assistive intelligent agents to efficiently plan for rearrangement under such partial observability. This requires efficient trade-offs between exploration of the environment and planning for rearrangement, which is challenging because of long-horizon nature of the problem. To make progress on this problem, we first analyze the effects of various factors such as number of objects and receptacles, agent carrying capacity, environment layouts etc. on exploration and planning for rearrangement using classical methods. We then investigate both monolithic and modular deep reinforcement learning (DRL) methods for planning in our setting. We find that monolithic DRL methods do not succeed at long-horizon planning needed for multi-object rearrangement. Instead, modular greedy approaches surprisingly perform reasonably well and emerge as competitive baselines for planning with partial observability in multi-object rearrangement problems. We also show that our greedy modular agents are empirically optimal when the objects that need to be rearranged are uniformly distributed in the environment -- thereby contributing baselines with strong performance for future work on multi-object rearrangement planning in partially observable settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.