Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Explanations: Leveraging Human Input to Align Explainable AI (2301.09656v3)

Published 23 Jan 2023 in cs.AI, cs.CL, cs.HC, and cs.LG

Abstract: While a vast collection of explainable AI (XAI) algorithms have been developed in recent years, they are often criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective -- a fundamental property of human explanations -- by selectively presenting a subset from a large set of model reasons based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small sample. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three out of a broader possible set of paradigms based on our proposed framework: in Study 1, we ask the participants to provide their own input to generate selective explanations, with either open-ended or critique-based input. In Study 2, we show participants selective explanations based on input from a panel of similar users (annotators). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving decision outcomes and subjective perceptions of the AI, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potentials to encourage future work to better align AI explanations with human production and consumption of explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Vivian Lai (28 papers)
  2. Yiming Zhang (128 papers)
  3. Chacha Chen (17 papers)
  4. Q. Vera Liao (49 papers)
  5. Chenhao Tan (89 papers)
Citations (27)