Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on weak convergence of complex Monge-Ampère measures (2301.09495v3)

Published 23 Jan 2023 in math.CV

Abstract: Let $(u_j)$ be a deaceasing sequence of psh functions in the domain of definition $\cal D$ of the Monge-Amp`ere operator on a domain $\Omega$ of $\mathbb{C}n$ such that $u=\inf_j u_j$ is plurisubharmonic on $\Omega$. In this paper we are interested in the problem of finding conditions insuring that \begin{equation*} \lim_{j\to +\infty} \int\varphi (ddcu_j)n=\int\varphi {\rm NP}(ddcu)n \end{equation*} for any continuous function on $\Omega$ with compact support, where ${\rm NP}(ddcu)n$ is the nonpolar part of $(ddcu)n$, and conditions implying that $u\in \cal D$. For $u_j=\max(u,-j)$ these conditions imply also that \begin{equation*} \lim_{j\to +\infty} \int_K(ddcu_j)n=\int_K {\rm NP}(ddcu)n \end{equation*} for any compact set $K\subset{u>-\infty}$.

Summary

We haven't generated a summary for this paper yet.