Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Velocity-Based LOD Reduction in Virtual Reality: A Psychometric Approach (2301.09394v1)

Published 23 Jan 2023 in cs.GR and cs.HC

Abstract: Virtual Reality headsets enable users to explore the environment by performing self-induced movements. The retinal velocity produced by such motion reduces the visual system's ability to resolve fine detail. We measured the impact of self-induced head rotations on the ability to detect quality changes of a realistic 3D model in an immersive virtual reality environment. We varied the Level-of-Detail (LOD) as a function of rotational head velocity with different degrees of severity. Using a psychophysical method, we asked 17 participants to identify which of the two presented intervals contained the higher quality model under two different maximum velocity conditions. After fitting psychometric functions to data relating the percentage of correct responses to the aggressiveness of LOD manipulations, we identified the threshold severity for which participants could reliably (75\%) detect the lower LOD model. Participants accepted an approximately four-fold LOD reduction even in the low maximum velocity condition without a significant impact on perceived quality, which suggests that there is considerable potential for optimisation when users are moving (increased range of perceptual uncertainty). Moreover, LOD could be degraded significantly more in the maximum head velocity condition, suggesting these effects are indeed speed dependent.

Summary

We haven't generated a summary for this paper yet.