Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Knapsack and Partition via Dense Subset Sums (2301.09333v1)

Published 23 Jan 2023 in cs.DS

Abstract: Knapsack and Partition are two important additive problems whose fine-grained complexities in the $(1-\varepsilon)$-approximation setting are not yet settled. In this work, we make progress on both problems by giving improved algorithms. - Knapsack can be $(1 - \varepsilon)$-approximated in $\tilde O(n + (1/\varepsilon) ^ {2.2} )$ time, improving the previous $\tilde O(n + (1/\varepsilon) ^ {2.25} )$ by Jin (ICALP'19). There is a known conditional lower bound of $(n+\varepsilon){2-o(1)}$ based on $(\min,+)$-convolution hypothesis. - Partition can be $(1 - \varepsilon)$-approximated in $\tilde O(n + (1/\varepsilon) ^ {1.25} )$ time, improving the previous $\tilde O(n + (1/\varepsilon) ^ {1.5} )$ by Bringmann and Nakos (SODA'21). There is a known conditional lower bound of $(1/\varepsilon){1-o(1)}$ based on Strong Exponential Time Hypothesis. Both of our new algorithms apply the additive combinatorial results on dense subset sums by Galil and Margalit (SICOMP'91), Bringmann and Wellnitz (SODA'21). Such techniques have not been explored in the context of Knapsack prior to our work. In addition, we design several new methods to speed up the divide-and-conquer steps which naturally arise in solving additive problems.

Citations (15)

Summary

We haven't generated a summary for this paper yet.