Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Luminal Subtypes in Full Mammogram Images Using Transfer Learning (2301.09282v1)

Published 23 Jan 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Automatic identification of patients with luminal and non-luminal subtypes during a routine mammography screening can support clinicians in streamlining breast cancer therapy planning. Recent machine learning techniques have shown promising results in molecular subtype classification in mammography; however, they are highly dependent on pixel-level annotations, handcrafted, and radiomic features. In this work, we provide initial insights into the luminal subtype classification in full mammogram images trained using only image-level labels. Transfer learning is applied from a breast abnormality classification task, to finetune a ResNet-18-based luminal versus non-luminal subtype classification task. We present and compare our results on the publicly available CMMD dataset and show that our approach significantly outperforms the baseline classifier by achieving a mean AUC score of 0.6688 and a mean F1 score of 0.6693 on the test dataset. The improvement over baseline is statistically significant, with a p-value of p<0.0001.

Citations (1)

Summary

We haven't generated a summary for this paper yet.