Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential sum approximations of finite completely monotonic functions (2301.08931v3)

Published 21 Jan 2023 in math.NA and cs.NA

Abstract: Bernstein's theorem (also called Hausdorff--Bernstein--Widder theorem) enables the integral representation of a completely monotonic function. We introduce a finite completely monotonic function, which is a completely monotonic function with a finite positive integral interval of the integral representation. We consider the exponential sum approximation of a finite completely monotonic function based on the Gaussian quadrature with a variable transformation. If the variable transformation is analytic on an open Bernstein ellipse, the maximum absolute error decreases at least geometrically with respect to the number of exponential functions. The maximization of the decreasing rate of the error bound can be achieved by using a variable transformation represented by Jacobi's delta amplitude function (also called dn function). The error curve is expanded by introducing basis functions, which are eigenfunctions of a fourth order differential operator, satisfy orthogonality conditions, and have the interlacing property of zeros by Kellogg's theorem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.