Topological semiinfinite tensor (super)modules (2301.08921v1)
Abstract: We construct universal monoidal categories of topological tensor supermodules over the Lie superalgebras $\mathfrak{gl}(V\oplus \Pi V)$ and $\mathfrak{osp}(V\oplus \Pi V)$ associated with a Tate space $V$. Here $V\oplus \Pi V$ is a $\mathbb{Z}/2\mathbb{Z}$-graded topological vector space whose even and odd parts are isomorphic to $V$. We discuss the purely even case first, by introducing monoidal categories$\widehat{\mathbf{T}}{\mathfrak{gl}(V)}$, $\widehat{\mathbf{T}}{\mathfrak{o}(V)}$ and $\widehat{\mathbf{T}}{\mathfrak{sp}(V)}$, and show that these categories are anti-equivalent to respective previously studied categories $\mathbb{T}{\mathfrak{gl}(V)}$, $\mathbb{T}{\mathfrak{o}(V)}$, $\mathbb{T}{\mathfrak{sp}(V)}$. These latter categories have certain universality properties as monoidal categories, which consequently carry over to $\widehat{\mathbf{T}}{\mathfrak{gl}(V)}$, $\widehat{\mathbf{T}}{\mathfrak{o}(V)}$ and $\widehat{\mathbf{T}}{\mathfrak{sp}(V)}$. Moreover, the categories $\mathbb{T}{\mathfrak{o}(V)}$ and $\mathbb{T}{\mathfrak{sp}(V)}$ are known to be equivalent, and this implies the equivalence of the categories $\widehat{\mathbf{T}}{\mathfrak{o}(V)}$ and $\widehat{\mathbf{T}}{\mathfrak{sp}(V)}$. After introducing a supersymmetric setting, we establish the equivalence of the category $\widehat{\mathbf{T}}{\mathfrak{gl}(V)}$ with the category $\widehat{\mathbf{T}}{\mathfrak{gl}(V\oplus \Pi V)}$, and the equivalence of both categories $\widehat{\mathbf{T}}{\mathfrak{o}(V)}$ and $\widehat{\mathbf{T}}{\mathfrak{sp}(V)}$ with $\widehat{\mathbf{T}}{\mathfrak{osp}(V\oplus \Pi V)}$.