Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

NGC 1068 constraints on neutrino-dark matter scattering (2301.08756v2)

Published 20 Jan 2023 in hep-ph, astro-ph.CO, and astro-ph.HE

Abstract: The IceCube collaboration has observed the first steady-state point source of high-energy neutrinos, coming from the active galaxy NGC 1068. If neutrinos interacted strongly enough with dark matter, the emitted neutrinos would have been impeded by the dense spike of dark matter surrounding the supermassive black hole at the galactic center, which powers the emission. We derive a stringent upper limit on the scattering cross section between neutrinos and dark matter based on the observed events and theoretical models of the dark matter spike. The bound can be stronger than that obtained by the single IceCube neutrino event from the blazar TXS 0506+056 for some spike models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (126)
  1. G. Mangano, A. Melchiorri, P. Serra, A. Cooray, and M. Kamionkowski, “Cosmological bounds on dark matter-neutrino interactions,” Phys. Rev. D 74 (2006) 043517, arXiv:astro-ph/0606190.
  2. C. Boehm, M. J. Dolan, and C. McCabe, “A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck,” JCAP 08 (2013) 041, arXiv:1303.6270 [hep-ph].
  3. B. Bertoni, S. Ipek, D. McKeen, and A. E. Nelson, “Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions,” JHEP 04 (2015) 170, arXiv:1412.3113 [hep-ph].
  4. R. J. Wilkinson, C. Boehm, and J. Lesgourgues, “Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure,” JCAP 05 (2014) 011, arXiv:1401.7597 [astro-ph.CO].
  5. M. R. Mosbech, C. Boehm, S. Hannestad, O. Mena, J. Stadler, and Y. Y. Y. Wong, “The full Boltzmann hierarchy for dark matter-massive neutrino interactions,” JCAP 03 (2021) 066, arXiv:2011.04206 [astro-ph.CO].
  6. D. C. Hooper and M. Lucca, “Hints of dark matter-neutrino interactions in Lyman-α𝛼\alphaitalic_α data,” Phys. Rev. D 105 no. 10, (2022) 103504, arXiv:2110.04024 [astro-ph.CO].
  7. P. Fayet, D. Hooper, and G. Sigl, “Constraints on light dark matter from core-collapse supernovae,” Phys. Rev. Lett. 96 (2006) 211302, arXiv:hep-ph/0602169.
  8. IceCube Collaboration, A. McMullen, A. Vincent, C. Arguelles, and A. Schneider, “Dark matter neutrino scattering in the galactic centre with IceCube,” JINST 16 no. 08, (2021) C08001, arXiv:2107.11491 [astro-ph.HE].
  9. S. Koren, “Neutrino – Dark Matter Scattering and Coincident Detections of UHE Neutrinos with EM Sources,” JCAP 09 (2019) 013, arXiv:1903.05096 [hep-ph].
  10. K. Murase and I. M. Shoemaker, “Neutrino Echoes from Multimessenger Transient Sources,” Phys. Rev. Lett. 123 no. 24, (2019) 241102, arXiv:1903.08607 [hep-ph].
  11. J. A. Carpio, A. Kheirandish, and K. Murase, “Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino interactions,” arXiv:2204.09650 [hep-ph].
  12. J. H. Davis and J. Silk, “Spectral and Spatial Distortions of PeV Neutrinos from Scattering with Dark Matter,” arXiv:1505.01843 [hep-ph].
  13. W. Yin, “Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal,” EPJ Web Conf. 208 (2019) 04003, arXiv:1809.08610 [hep-ph].
  14. Y. Zhang, “Speeding up dark matter with solar neutrinos,” PTEP 2022 no. 1, (2022) 013B05, arXiv:2001.00948 [hep-ph].
  15. Y. Jho, J.-C. Park, S. C. Park, and P.-Y. Tseng, “Cosmic-Neutrino-Boosted Dark Matter (ν𝜈\nuitalic_νBDM),” arXiv:2101.11262 [hep-ph].
  16. Y. Farzan and S. Palomares-Ruiz, “Dips in the Diffuse Supernova Neutrino Background,” JCAP 06 (2014) 014, arXiv:1401.7019 [hep-ph].
  17. A. Das and M. Sen, “Boosted dark matter from diffuse supernova neutrinos,” Phys. Rev. D 104 no. 7, (2021) 075029, arXiv:2104.00027 [hep-ph].
  18. D. Ghosh, A. Guha, and D. Sachdeva, “Exclusion limits on dark matter-neutrino scattering cross section,” Phys. Rev. D 105 no. 10, (2022) 103029, arXiv:2110.00025 [hep-ph].
  19. D. Bardhan, S. Bhowmick, D. Ghosh, A. Guha, and D. Sachdeva, “Boosting through the Darkness,” arXiv:2208.09405 [hep-ph].
  20. Y.-H. Lin, W.-H. Wu, M.-R. Wu, and H. T.-K. Wong, “Searching for Afterglow: Light Dark Matter boosted by Supernova Neutrinos,” arXiv:2206.06864 [hep-ph].
  21. J. A. Dror, G. Elor, R. McGehee, and T.-T. Yu, “Absorption of sub-MeV fermionic dark matter by electron targets,” Phys. Rev. D 103 no. 3, (2021) 035001, arXiv:2011.01940 [hep-ph]. [Erratum: Phys.Rev.D 105, 119903 (2022)].
  22. J. A. Dror, G. Elor, and R. Mcgehee, “Directly Detecting Signals from Absorption of Fermionic Dark Matter,” Phys. Rev. Lett. 124 no. 18, (2020) 18, arXiv:1905.12635 [hep-ph].
  23. J. A. Dror, G. Elor, and R. Mcgehee, “Absorption of Fermionic Dark Matter by Nuclear Targets,” JHEP 02 (2020) 134, arXiv:1908.10861 [hep-ph].
  24. PandaX Collaboration, L. Gu et al., “First Search for the Absorption of Fermionic Dark Matter with the PandaX-4T Experiment,” Phys. Rev. Lett. 129 no. 16, (2022) 161803, arXiv:2205.15771 [hep-ex].
  25. PandaX Collaboration, D. Zhang et al., “Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T,” Phys. Rev. Lett. 129 no. 16, (2022) 161804, arXiv:2206.02339 [hep-ex].
  26. MAJORANA Collaboration, I. J. Arnquist et al., “Exotic dark matter search with the Majorana Demonstrator,” arXiv:2206.10638 [hep-ex].
  27. EXO-200 Collaboration, S. A. Kharusi et al., “Search for MeV Electron Recoils from Dark Matter in EXO-200,” arXiv:2207.00897 [hep-ex].
  28. CDEX Collaboration, W. H. Dai et al., “Exotic Dark Matter Search with the CDEX-10 Experiment at China’s Jinping Underground Laboratory,” Phys. Rev. Lett. 129 no. 22, (2022) 221802, arXiv:2209.00861 [hep-ex].
  29. IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration, M. G. Aartsen et al., “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361 no. 6398, (2018) eaat1378, arXiv:1807.08816 [astro-ph.HE].
  30. J. M. Cline, S. Gao, F. Guo, Z. Lin, S. Liu, M. Puel, P. Todd, and T. Xiao, “Blazar Constraints on Neutrino-Dark Matter Scattering,” Phys. Rev. Lett. 130 no. 9, (2023) 091402, arXiv:2209.02713 [hep-ph].
  31. IceCube Collaboration, R. Abbasi et al., “Evidence for neutrino emission from the nearby active galaxy NGC 1068,” Science 378 no. 6619, (2022) 538–543, arXiv:2211.09972 [astro-ph.HE].
  32. D. M. Crenshaw and S. B. Kraemer, “Resolved spectroscopy of the narrow-line region in ngc 1068: kinematics of the ionized gas,” Astrophys. J. Lett. 532 (2000) L101, arXiv:astro-ph/0002438.
  33. W. Jaffe et al., “The central dusty torus in the active nucleus of NGC 1068,” Nature 429 (2004) 47–49.
  34. IceCube Collaboration. https://icecube.wisc.edu/data-releases/2022/11/.
  35. M. Bustamante, J. F. Beacom, and W. Winter, “Theoretically palatable flavor combinations of astrophysical neutrinos,” Phys. Rev. Lett. 115 no. 16, (2015) 161302, arXiv:1506.02645 [astro-ph.HE].
  36. C. A. Argüelles, T. Katori, and J. Salvado, “New Physics in Astrophysical Neutrino Flavor,” Phys. Rev. Lett. 115 (2015) 161303, arXiv:1506.02043 [hep-ph].
  37. P. Gondolo and J. Silk, “Dark matter annihilation at the galactic center,” Phys. Rev. Lett. 83 (1999) 1719–1722, arXiv:astro-ph/9906391.
  38. P. Ullio, H. Zhao, and M. Kamionkowski, “A Dark matter spike at the galactic center?,” Phys. Rev. D 64 (2001) 043504, arXiv:astro-ph/0101481.
  39. M. Gorchtein, S. Profumo, and L. Ubaldi, “Probing Dark Matter with AGN Jets,” Phys. Rev. D 82 (2010) 083514, arXiv:1008.2230 [astro-ph.HE]. [Erratum: Phys.Rev.D 84, 069903 (2011)].
  40. D. Merritt, “Evolution of the dark matter distribution at the galactic center,” Phys. Rev. Lett. 92 (2004) 201304, arXiv:astro-ph/0311594.
  41. O. Y. Gnedin and J. R. Primack, “Dark Matter Profile in the Galactic Center,” Phys. Rev. Lett. 93 (2004) 061302, arXiv:astro-ph/0308385.
  42. D. Merritt, S. Harfst, and G. Bertone, “Collisionally Regenerated Dark Matter Structures in Galactic Nuclei,” Phys. Rev. D 75 (2007) 043517, arXiv:astro-ph/0610425.
  43. S. L. Shapiro and D. C. Heggie, “Effect of stars on the dark matter spike around a black hole: A tale of two treatments,” Phys. Rev. D 106 no. 4, (2022) 043018, arXiv:2209.08105 [astro-ph.GA].
  44. L. Sadeghian, F. Ferrer, and C. M. Will, “Dark matter distributions around massive black holes: A general relativistic analysis,” Phys. Rev. D 88 no. 6, (2013) 063522, arXiv:1305.2619 [astro-ph.GA].
  45. F. Ferrer, A. M. da Rosa, and C. M. Will, “Dark matter spikes in the vicinity of Kerr black holes,” Phys. Rev. D 96 no. 8, (2017) 083014, arXiv:1707.06302 [astro-ph.CO].
  46. O. Piana, P. Dayal, M. Volonteri, and T. R. Choudhury, “The mass assembly of high-redshift black holes,” Monthly Notices of the Royal Astronomical Society 500 no. 2, (Oct, 2020) 2146–2158. https://doi.org/10.1093%2Fmnras%2Fstaa3363.
  47. J.-W. Wang, A. Granelli, and P. Ullio, “Direct Detection Constraints on Blazar-Boosted Dark Matter,” Phys. Rev. Lett. 128 (2022) 221104, arXiv:2111.13644 [astro-ph.HE].
  48. A. Granelli, P. Ullio, and J.-W. Wang, “Blazar-boosted dark matter at Super-Kamiokande,” JCAP 07 no. 07, (2022) 013, arXiv:2202.07598 [astro-ph.HE].
  49. F. Ferrer, G. Herrera, and A. Ibarra, “New constraints on the dark matter-neutrino and dark matter-photon scattering cross sections from TXS 0506+056,” arXiv:2209.06339 [hep-ph].
  50. T. Lacroix, C. Bœhm, and J. Silk, “Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy,” Phys. Rev. D 92 no. 4, (2015) 043510, arXiv:1505.00785 [astro-ph.GA].
  51. T. Lacroix, M. Karami, A. E. Broderick, J. Silk, and C. Boehm, “Unique probe of dark matter in the core of M87 with the Event Horizon Telescope,” Phys. Rev. D 96 no. 6, (2017) 063008, arXiv:1611.01961 [astro-ph.GA].
  52. T. Di Matteo, R. A. C. Croft, V. Springel, and L. Hernquist, “Black hole growth and activity in a lambda CDM universe,” Astrophys. J. 593 (2003) 56–68, arXiv:astro-ph/0301586.
  53. L. Ferrarese, “Beyond the bulge: a fundamental relation between supermassive black holes and dark matter halos,” Astrophys. J. 578 (2002) 90–97, arXiv:astro-ph/0203469.
  54. M. Baes, P. Buyle, G. K. T. Hau, and H. Dejonghe, “Observational evidence for a connection between supermassive black holes and dark matter haloes,” Mon. Not. Roy. Astron. Soc. 341 (2003) L44, arXiv:astro-ph/0303628.
  55. L. J. Greenhill, C. R. Gwinn, R. Antonucci, and R. Barvainis, “Vlbi imaging of water maser emission from the nuclear torus of ngc 1068,” Astrophys. J. Lett. 472 (1996) L21, arXiv:astro-ph/9609082.
  56. F. L. J. Greenhill and C. R. Gwinn, “VLBI Imaging of Water Maser Emission from a Nuclear Disk in NGC 1068,” Astrophysics and Space Science 248 no. 1-2, (1997) 261–267.
  57. J.-M. Hure, “Origin of non-keplerian motions of masers in ngc 1068,” Astron. Astrophys. 395 (2002) L21–L24, arXiv:astro-ph/0210180.
  58. G. Lodato and G. Bertin, “Non-Keplerian rotation in the nucleus of NGC 1068: Evidence for a massive accretion disk?,” Astron. Astrophys. 398 (2003) 517–524, arXiv:astro-ph/0211113.
  59. J.-H. Woo and C. M. Urry, “AGN black hole masses and bolometric luminosities,” Astrophys. J. 579 (2002) 530–544, arXiv:astro-ph/0207249.
  60. F. Panessa, L. Bassani, M. Cappi, M. Dadina, X. Barcons, F. J. Carrera, L. C. Ho, and K. Iwasawa, “On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies,” Astron. Astrophys. 455 (2006) 173, arXiv:astro-ph/0605236.
  61. T. Minezaki and K. Matsushita, “A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei,” Astrophys. J. 802 (2015) 98, arXiv:1501.07522.
  62. J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, A. A. Klypin, J. R. Primack, and A. Dekel, “Profiles of dark haloes. Evolution, scatter, and environment,” Mon. Not. Roy. Astron. Soc. 321 (2001) 559–575, arXiv:astro-ph/9908159.
  63. B. M. Sabra, C. Saliba, M. Abi Akl, and G. Chahine, “The black hole-dark matter halo connection,” Astrophys. J. 803 no. 1, (2015) 5, arXiv:1502.00775 [astro-ph.GA].
  64. E. Brinks, E. D. Skillman, R. J. Terlevich, and E. Terlevich, “HI Observations of NGC 1068,” Astrophys. Space Sci 248 no. 1-2, (Feb., 1997) 23–31.
  65. G. Paturel, C. Petit, P. Prugniel, G. Theureau, J. Rousseau, M. Brouty, P. Dubois, and L. Cambresy, “HYPERLEDA. I. Identification and designation of galaxies,” Astron. Astrophys. 412 (2003) 45–55. http://leda.univ-lyon1.fr.
  66. G. Gentile, C. Tonini, and P. Salucci, “Lambda CDM Halo Density Profiles: Where do actual halos converge to NFW ones?,” Astron. Astrophys. 467 (2007) 925–931, arXiv:astro-ph/0701550.
  67. M. Cautun, A. Benitez-Llambay, A. J. Deason, C. S. Frenk, A. Fattahi, F. A. Gómez, R. J. J. Grand, K. A. Oman, J. F. Navarro, and C. M. Simpson, “The Milky Way total mass profile as inferred from Gaia DR2,” Mon. Not. Roy. Astron. Soc. 494 no. 3, (2020) 4291–4313, arXiv:1911.04557 [astro-ph.GA].
  68. E. H. T. Collaboration, “First sagittarius a⋆⋆\star⋆ event horizon telescope results. i. the shadow of the supermassive black hole in the center of the milky way,” The Astrophysical Journal Letters 930 no. 2, (May, 2022) L12. https://dx.doi.org/10.3847/2041-8213/ac6674.
  69. M. Cermeño, C. Degrande, and L. Mantani, “Signatures of leptophilic t-channel dark matter from active galactic nuclei,” Phys. Rev. D 105 no. 8, (2022) 083019, arXiv:2201.07247 [hep-ph].
  70. J. I. Katz, “Nonrelativistic Compton scattering and models of quasars.,” Astrophys. J. 206 (Jun, 1976) 910–916.
  71. G. S. Bisnovatyi-Kogan and S. I. Blinnikov, “Disk accretion onto a black hole at subcritical luminosity.,” Astron. and Astrophys. 59 (Jul, 1977) 111–125.
  72. D. Eichler, “High-energy neutrino astronomy: a probe of galactic nuclei?,” Astrophys. J. 232 (Aug, 1979) 106–112.
  73. L. A. Pozdnyakov, I. M. Sobol, and R. A. Syunyaev, “Comptonization and the shaping of X-ray source spectra - Monte Carlo calculations,” Soviet Ast. 2 (Jan, 1983) 189–331.
  74. A. A. Galeev, R. Rosner, and G. S. Vaiana, “Structured coronae of accretion disks.,” Astrophys. J. 229 (Apr, 1979) 318–326.
  75. M. C. Begelman, B. Rudak, and M. Sikora, “Consequences of Relativistic Proton Injection in Active Galactic Nuclei,” Astrophys. J. 362 (Oct, 1990) 38.
  76. F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, “High-energy neutrinos from active galactic nuclei,” Phys. Rev. Lett. 66 no. 21, (May, 1991) 2697–2700.
  77. O. Kalashev, D. Semikoz, and I. Tkachev, “Neutrinos in IceCube from active galactic nuclei,” J. Exp. Theor. Phys. 120 no. 3, (2015) 541–548, arXiv:1410.8124 [astro-ph.HE].
  78. Y. Inoue, D. Khangulyan, and A. Doi, “On the Origin of High-energy Neutrinos from NGC 1068: The Role of Nonthermal Coronal Activity,” Astrophys. J. Lett. 891 no. 2, (2020) L33, arXiv:1909.02239 [astro-ph.HE].
  79. Y. Inoue, D. Khangulyan, S. Inoue, and A. Doi, “On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma rays and high-energy neutrinos from AGN cores,” arXiv:1904.00554 [astro-ph.HE].
  80. K. Murase, S. S. Kimura, and P. Meszaros, “Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection,” Phys. Rev. Lett. 125 no. 1, (2020) 011101, arXiv:1904.04226 [astro-ph.HE].
  81. A. Kheirandish, K. Murase, and S. S. Kimura, “High-energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes,” Astrophys. J. 922 no. 1, (2021) 45, arXiv:2102.04475 [astro-ph.HE].
  82. K. Murase, D. Guetta, and M. Ahlers, “Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos,” Phys. Rev. Lett. 116 no. 7, (2016) 071101, arXiv:1509.00805 [astro-ph.HE].
  83. Y. Inoue and A. Doi, “Detection of Coronal Magnetic Activity in Nearby Active Supermassive Black Holes,” Astrophys. J. 869 no. 2, (2018) 114, arXiv:1810.10732 [astro-ph.HE].
  84. J. F. Gallimore, S. A. Baum, and C. P. O’Dea, “The parsec-scale radio structure of ngc 1068 and the nature of the nuclear radio source,” Astrophys. J. 613 (2004) 794–810, arXiv:astro-ph/0406062.
  85. K. Murase, “Hidden Hearts of Neutrino Active Galaxies,” Astrophys. J. Lett. 941 no. 1, (2022) L17, arXiv:2211.04460 [astro-ph.HE].
  86. K.-Y. Choi, J. Kim, and C. Rott, “Constraining dark matter-neutrino interactions with IceCube-170922A,” Phys. Rev. D 99 no. 8, (2019) 083018, arXiv:1903.03302 [astro-ph.CO].
  87. R. B. Tully, Nearby galaxies catalog. Cambridge University Press, 1988.
  88. J. Bland-Hawthorn, J. F. Gallimore, L. J. Tacconi, E. Brinks, S. A. Baum, R. R. J. Antonucci, and G. N. Cecil, “The Ringberg Standards for NGC 1068,” Astrophys. Space Sci 248 no. 1-2, (Feb, 1997) 9–19.
  89. H. An, M. Pospelov, J. Pradler, and A. Ritz, “Directly Detecting MeV-scale Dark Matter via Solar Reflection,” Phys. Rev. Lett. 120 no. 14, (2018) 141801, arXiv:1708.03642 [hep-ph]. [Erratum: Phys.Rev.Lett. 121, 259903 (2018)].
  90. SENSEI Collaboration, L. Barak et al., “SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD,” Phys. Rev. Lett. 125 no. 17, (2020) 171802, arXiv:2004.11378 [astro-ph.CO].
  91. R. Essig, T. Volansky, and T.-T. Yu, “New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon,” Phys. Rev. D 96 no. 4, (2017) 043017, arXiv:1703.00910 [hep-ph].
  92. DarkSide-50 Collaboration, P. Agnes et al., “Search for dark matter particle interactions with electron final states with DarkSide-50,” arXiv:2207.11968 [hep-ex].
  93. XENON Collaboration, E. Aprile et al., “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123 no. 25, (2019) 251801, arXiv:1907.11485 [hep-ex].
  94. C. A. Argüelles, A. Kheirandish, and A. C. Vincent, “Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos,” Phys. Rev. Lett. 119 no. 20, (2017) 201801, arXiv:1703.00451 [hep-ph].
  95. A. C. Vincent, C. A. Argüelles, and A. Kheirandish, “High-energy neutrino attenuation in the Earth and its associated uncertainties,” JCAP 11 (2017) 012, arXiv:1706.09895 [hep-ph].
  96. G. J. Feldman and R. D. Cousins, “A Unified approach to the classical statistical analysis of small signals,” Phys. Rev. D 57 (1998) 3873–3889, arXiv:physics/9711021.
  97. S. Bhowmick, D. Ghosh, and D. Sachdeva, “Blazar boosted Dark Matter – direct detection constraints on σe⁢χsubscript𝜎𝑒𝜒\sigma_{e\chi}italic_σ start_POSTSUBSCRIPT italic_e italic_χ end_POSTSUBSCRIPT : Role of energy dependent cross sections,” arXiv:2301.00209 [hep-ph].
  98. F. Halzen, “IceCube: the First Decade of Neutrino Astronomy,” in preparation (2023) .
  99. V. M. Lipunov et al., “Optical Observations Reveal Strong Evidence for High Energy Neutrino Progenitor,” Astrophys. J. 896 no. 2, (6, 2020) L19, arXiv:2006.04918 [astro-ph.HE].
  100. B. Eichmann, F. Oikonomou, S. Salvatore, R.-J. Dettmar, and J. Becker Tjus, “Solving the Multimessenger Puzzle of the AGN-starburst Composite Galaxy NGC 1068,” Astrophys. J. 939 no. 1, (2022) 43, arXiv:2207.00102 [astro-ph.HE].
  101. S. Inoue, M. Cerruti, K. Murase, and R.-Y. Liu, “High-energy neutrinos and gamma rays from winds and tori in active galactic nuclei,” arXiv:2207.02097 [astro-ph.HE].
  102. L. A. Anchordoqui, J. F. Krizmanic, and F. W. Stecker, “High-Energy Neutrinos from NGC 1068,” PoS ICRC2021 (2021) 993, arXiv:2102.12409 [astro-ph.HE].
  103. T. M. Yoast-Hull, J. S. G. III, E. G. Zweibel, and J. E. Everett, “Active Galactic Nuclei, Neutrinos, and Interacting Cosmic Rays in NGC 253 and NGC 1068,” Astrophys. J. 780 (2014) 137, arXiv:1311.5586 [astro-ph.HE].
  104. A. Lamastra, F. Fiore, D. Guetta, L. A. Antonelli, S. Colafrancesco, N. Menci, S. Puccetti, A. Stamerra, and L. Zappacosta, “Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068,” Astron. Astrophys. 596 (2016) A68, arXiv:1609.09664 [astro-ph.HE].
  105. MAGIC Collaboration, V. A. Acciari et al., “Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC telescopes,” Astrophys. J. 883 (2019) 135, arXiv:1906.10954 [astro-ph.HE].
  106. A. Marinucci et al., “NuSTAR catches the unveiling nucleus of NGC 1068,” Mon. Not. Roy. Astron. Soc. 456 no. 1, (2016) L94–L98, arXiv:1511.03503 [astro-ph.HE].
  107. M. A. Prieto, J. Reunanen, K. R. W. Tristram, N. Neumayer, J. A. Fernandez-Ontiveros, M. Orienti, and K. Meisenheimer, “The spectral energy distribution of the central parsecs of the nearest AGN,” Mon. Not. Roy. Astron. Soc. 402 (2010) 724–744, arXiv:0910.3771 [astro-ph.CO].
  108. Fermi-LAT Collaboration, M. Ajello et al., “3FHL: The Third Catalog of Hard Fermi-LAT Sources,” Astrophys. J. Suppl. 232 no. 2, (2017) 18, arXiv:1702.00664 [astro-ph.HE].
  109. Fermi-LAT Collaboration, S. Abdollahi et al., “F⁢e⁢r⁢m⁢i𝐹𝑒𝑟𝑚𝑖Fermiitalic_F italic_e italic_r italic_m italic_i Large Area Telescope Fourth Source Catalog,” Astrophys. J. Suppl. 247 no. 1, (2020) 33, arXiv:1902.10045 [astro-ph.HE].
  110. IceCube Collaboration, M. G. Aartsen et al., “Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data,” Phys. Rev. Lett. 124 no. 5, (2020) 051103, arXiv:1910.08488 [astro-ph.HE].
  111. M. Bauer, P. Foldenauer, and J. Jaeckel, “Hunting All the Hidden Photons,” JHEP 07 (2018) 094, arXiv:1803.05466 [hep-ph].
  112. K.-Y. Choi, E. J. Chun, and J. Kim, “Neutrino Oscillations in Dark Matter,” Phys. Dark Univ. 30 (2020) 100606, arXiv:1909.10478 [hep-ph].
  113. G. Steigman, B. Dasgupta, and J. F. Beacom, “Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation,” Phys. Rev. D 86 (2012) 023506, arXiv:1204.3622 [hep-ph].
  114. L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, “Freeze-In Production of FIMP Dark Matter,” JHEP 03 (2010) 080, arXiv:0911.1120 [hep-ph].
  115. J. M. Cline, “TASI Lectures on Early Universe Cosmology: Inflation, Baryogenesis and Dark Matter,” PoS TASI2018 (2019) 001, arXiv:1807.08749 [hep-ph].
  116. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  117. X. Rodrigues, S. Garrappa, S. Gao, V. S. Paliya, A. Franckowiak, and W. Winter, “Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106,” Astrophys. J. 912 no. 1, (2021) 54, arXiv:2009.04026 [astro-ph.HE].
  118. P. Giommi, P. Padovani, F. Oikonomou, T. Glauch, S. Paiano, and E. Resconi, “3HSP J095507.9+355101: a flaring extreme blazar coincident in space and time with IceCube-200107A,” Astron. Astrophys. 640 (2020) L4, arXiv:2003.06405 [astro-ph.HE].
  119. Fermi-LAT, ASAS-SN, IceCube Collaboration, S. Garrappa et al., “Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube,” Astrophys. J. 880 no. 2, (2019) 880:103, arXiv:1901.10806 [astro-ph.HE].
  120. M. Kadler et al., “Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event,” Nature Phys. 12 no. 8, (2016) 807–814, arXiv:1602.02012 [astro-ph.HE].
  121. N. Sahakyan, P. Giommi, P. Padovani, M. Petropoulou, D. Bégué, B. Boccardi, and S. Gasparyan, “A multi-messenger study of the blazar PKS 0735+178: a new major neutrino source candidate,” arXiv:2204.05060 [astro-ph.HE].
  122. IceCube Collaboration, R. Abbasi et al., “Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources,” Astrophys. J. Lett. 920 no. 2, (2021) L45, arXiv:2109.05818 [astro-ph.HE].
  123. P. Giommi, T. Glauch, P. Padovani, E. Resconi, A. Turcati, and Y. L. Chang, “Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection,” Mon. Not. Roy. Astron. Soc. 497 no. 1, (2020) 865–878, arXiv:2001.09355 [astro-ph.HE].
  124. A. Franckowiak et al., “Patterns in the Multiwavelength Behavior of Candidate Neutrino Blazars,” Astrophys. J. 893 no. 2, (2020) 162, arXiv:2001.10232 [astro-ph.HE].
  125. A. B. Romeo and K. Fathi, “What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act,” Mon. Not. Roy. Astron. Soc. 460 no. 3, (2016) 2360–2367, arXiv:1602.03049 [astro-ph.GA].
  126. P. Padovani, F. Oikonomou, M. Petropoulou, P. Giommi, and E. Resconi, “TXS 0506+056, the first cosmic neutrino source, is not a BL Lac,” Mon. Not. Roy. Astron. Soc. 484 no. 1, (2019) L104–L108, arXiv:1901.06998 [astro-ph.HE].
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.