Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Peanuts Fall in Love with Distributional Semantics? (2301.08731v2)

Published 20 Jan 2023 in cs.CL

Abstract: Context changes expectations about upcoming words - following a story involving an anthropomorphic peanut, comprehenders expect the sentence the peanut was in love more than the peanut was salted, as indexed by N400 amplitude (Nieuwland & van Berkum, 2006). This updating of expectations has been explained using Situation Models - mental representations of a described event. However, recent work showing that N400 amplitude is predictable from distributional information alone raises the question whether situation models are necessary for these contextual effects. We model the results of Nieuwland and van Berkum (2006) using six computational LLMs and three sets of word vectors, none of which have explicit situation models or semantic grounding. We find that a subset of these can fully model the effect found by Nieuwland and van Berkum (2006). Thus, at least some processing effects normally explained through situation models may not in fact require explicit situation models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. James A. Michaelov (13 papers)
  2. Seana Coulson (3 papers)
  3. Benjamin K. Bergen (31 papers)
Citations (7)