Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Behavior of Zero-Forcing Precoding based on Imperfect Channel Knowledge for Massive MISO FDD Systems (2301.08505v2)

Published 20 Jan 2023 in eess.SP, cs.IT, and math.IT

Abstract: In this work, we study the asymptotic behavior of the zero-forcing precoder based on the least squares (LS) and the linear minimum mean-square error (LMMSE) channel estimates for the downlink (DL) of a frequency-division-duplex (FDD) massive multiple-input-single-output (MISO) system. We show analytically the rather surprising result that zero-forcing precoding based on the LS estimate leads asymptotically to an interference-free transmission, even if the number of pilots used for DL channel training is less than the number of antennas available at the base station (BS). Although the LMMSE channel estimate exhibits a better quality in terms of the MSE due to the exploitation of the channel statistics, we show that in the case of contaminated channel observations, zero-forcing based on the LMMSE is unable to eliminate the inter-user interference in the asymptotic limit of high DL transmit powers. In order for the results to hold, mild conditions on the channel probing phase are assumed. The validity of our analytical results is demonstrated through numerical simulations for different scenarios.

Citations (5)

Summary

We haven't generated a summary for this paper yet.