Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Catapult Dynamics and Phase Transitions in Quadratic Nets (2301.07737v1)

Published 18 Jan 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Neural networks trained with gradient descent can undergo non-trivial phase transitions as a function of the learning rate. In (Lewkowycz et al., 2020) it was discovered that wide neural nets can exhibit a catapult phase for super-critical learning rates, where the training loss grows exponentially quickly at early times before rapidly decreasing to a small value. During this phase the top eigenvalue of the neural tangent kernel (NTK) also undergoes significant evolution. In this work, we will prove that the catapult phase exists in a large class of models, including quadratic models and two-layer, homogenous neural nets. To do this, we show that for a certain range of learning rates the weight norm decreases whenever the loss becomes large. We also empirically study learning rates beyond this theoretically derived range and show that the activation map of ReLU nets trained with super-critical learning rates becomes increasingly sparse as we increase the learning rate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. David Meltzer (20 papers)
  2. Junyu Liu (141 papers)
Citations (9)